Logical modelling: Inferring structure from dynamics

Ling Sun, Therese Lorenz and Alexander Bockmayr Freie Universität Berlin

> Speaker: Ling Sun 08/09/2018

2 Dynamics characterisation

3 Reverse engineering: dynamics \Rightarrow structures

- Reverse engineering algorithms
- Reverse engineering workflow

Applications

- Biological case study
- ASTG enumeration in low dimension

5 Conclusion

Logical formalism: structure, a model M = (I, K)

• max: maximal activity levels

Logical parameter $K(v, \omega)$

Tendency of each component v under every possible combination ω of its positive influences

Alternative: logical rules, \land , \lor and \neg

ω	$K(v, \omega)$	ω	$K(u, \omega)$
Ø	0	Ø	0
{ u }	1	{ <i>U</i> }	0
{ v }	1	$\{v\}$	0
$\{v, u\}$	2	$\{v, u\}$	2

Berlin

Logical formalism: dynamics, ASTG $T_M = (X, S)$

1

State transitions

- asynchronous
- unitary

State
$$x = (x_{v_1}, x_{v_2})$$

10 $Res(v_1, 20) = \emptyset$
 $\downarrow \quad K(v_1, \emptyset) = 0$
 $\delta(v_1, 20) = sign(0 - 2) = -$
20 $\longrightarrow 21$
 $Res(v_2, 20) = \{v_1, v_2\}$
 $K(v_2, \{v_1, v_2\}) = 2$
 $\delta(v_2, 20) = sign(2 - 0) = 1$

Asynchronous state transition graph (ASTG) $T_M = (X, S), X$: state space, *S*: state transitions $S := \bigcup_{x \in X} \{ (x, x + \delta(u, x) e^u) \mid u \in V : \delta(u, x) \neq 0 \}$ (e^u is the *u*-th unit vector in *X*)

attractors: terminal strongly connected components

Earlin Berlin

Logical modelling: structure \iff dynamics

ECCB 2018

Row-types in ASTGs

Proposition ^[1,2]

Given an ASTG T_M , for each *u*-row $\tau^u = (x^0, \ldots, x^{\max_u})$, exactly one of the following situations holds:

In an ASTG, this indicates:

[1] T. Lorenz. Vergleich von zwei- und mehrwertigen Modellen.... Diploma Thesis, Freie Universität Berlin, 2011.
[2] T. Lorenz, H. Siebert and A. Bockmayr. Analysis and characterization of asynchronous Bull. of Math. Biol., 2013.

A Berlin

Extremal rows + interaction graph \implies ASTG: isomorphic rows

Theorem ^[2]

For any model M = (I, K), the ASTG T_M is uniquely determined by its extremal rows and the interaction graph *I*.

[2] T. Lorenz, H. Siebert and A. Bockmayr. *Analysis and characterization of asynchronous* Bull. of Math. Biol., 2013.
[3] L. Sun *Relating the structures and dynamics....* Doctoral Thesis, Freie Universität Berlin, 2017.

Freie Universität

Model

ASTG

ASTG example: a model with 3 nodes, v₂-rows

Extremal rows + interaction graph \implies ASTG: isomorphic slices

Parallel slices in one direction can change at most once.

Reverse engineering algorithms: model inference from given dynamics ^[2,3]

[2] T. Lorenz, H. Siebert and A. Bockmayr. *Analysis and characterization of asynchronous* Bull. of Math. Biol., 2013.
[3] L. Sun *Relating the structures and dynamics....* Doctoral Thesis, Freie Universität Berlin, 2017.

Reverse engineering workflow: explore structures for a desired behaviour

Initialise

V: nodes,
max: maximal activity levels of *V A*: attractors, the desired behaviour

Enumerate

all ASTGs based on the state space X with desired A (*in low dimension*)

Infer models

Reverse engineering algorithms

Analyse

Structural and logical analysis methods

Model patterns

Interaction patterns, building blocks, minimal logical representations

10/16

Structures producing a cyclic attractor

[4] K. Thobe, et al. *Model integration and crosstalk analysis...* Springer International Publishing, Cham, 2014.

Structures producing a cyclic attractor

Logical representation

core	building block 1	building block 2	building block 3
$\overline{x_{EM}^+ x_{RE}^- x_{MR}^+}$	$(x_{EE}^+ x_{ER}^+ + \overline{x_{ER}^+} \ \overline{x_{EE}^+})$	$(x_{MM}^+ x_{ME}^- + \overline{x_{MM}^+} \ \overline{x_{ME}^-})$	$\overline{(x_{RR}^+ x_{RM}^- + \overline{x_{RR}^+} \ \overline{x_{RM}^-})}$

Structures producing multiple steady states

Building blocks: incoming edges for v_i , $i \in \{1, 2, 3\}$ (can be combined freely)

[5] Breindl et al.. Structural requirements and discrimination of cell differentiation networks. IFAC Proceedings Volumes, 2011

Berlin

Number of ASTGs

- (1) 4: 4 Boolean rows, 1 row in (a).
- (2) 4^4 : 4 Boolean rows, 4 rows in (b).
- (3) $4^{4\times3}$: 4 Boolean rows, 4×3 rows in (c).

🖳 🕅 Berlin

ASTG enumeration in low dimension

Number of ASTGs on X 1764: 28×63 *v*-rows: $(4^2 \times 2 - 4) = 28$ *u*-rows: $(6^2 + 6^2 - 3^2) = 63$

Conclusion

Methods

- Characterise ASTGs: extremal rows, necessary and sufficient conditions
- Reverse engineering algorithms: network inference
- Reverse engineering workflow
- Applications
 - Biological case study
 - * homeostasis: a cyclic attractor from a simplified MAPK-cascade
 - * multistability: three stable states, cell differentiation
 - ASTG enumeration in low dimension

💶 🕅 Berlin

Thank you for your attention! $E v \chi \alpha \rho \iota \sigma \tau \acute{\omega}!$

Work groups Mathematics in Life Science & Discrete Biomathematics

- Lorenz, Therese. Vergleich von zwei- und mehrwertigen Modellen bioregulatorischer Netzwerke. Diploma Thesis, Freie Universität Berlin, 2011.
- Lorenz, Therese and Siebert, Heike and Bockmayr, Alexander. *Analysis and characterization of asynchronous state transition graphs using extremal states*. Bulletin of Mathematical Biology, 75/6, 920-938, 2013.
- Sun, Ling *Relating the structures and dynamics of gene regulatory networks*. Doctoral Thesis, Freie Universität Berlin, 2017.
- Thobe, K., Streck, A., Klarner, H., and Siebert, H. *Model integration and crosstalk analysis of logical regulatory networks*. pages 32–44. Springer International Publishing, Cham., 2014.
- Breindl, C., Schittler, D., Waldherr, S., and Allgöwer, F. Structural requirements and discrimination of cell differentiation networks. IFAC Proceedings Volumes, 44(1):11767–11772, 2011.

Freie Universität

Berlin