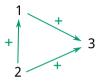
Most Permissive Semantics of Boolean Networks: Beyond Generalized Asynchronicity

Thomas Chatain¹, Stefan Haar¹, Loïc Paulevé²

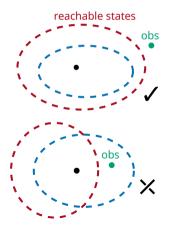

- ¹ LSV, ENS Paris-Saclay, Inria Saclay, France
- ² CNRS, LRI, Univ Paris-Sud, Univ Paris-Saclay, France

ECCB W6 2018, Athens, Greece

Most permissive semantics of Boolean networks Qualitative vs abstract modelling

Boolean network

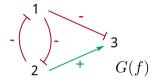
- logic of activity w.r.t. regulators
- update mode (sync, async, etc.)

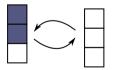

Multilevel network

+ define activation thresholds

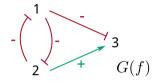
Quantitative model

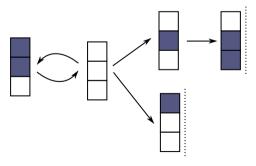
Consistency

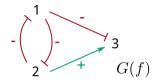

analysis at Boolean level transposable to multilevel?

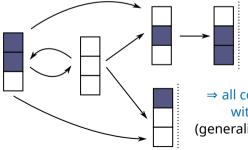


nformation


Update modes of Boolean networks: a **bug**...


$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$




$$f_1(x) \triangleq \neg x_2$$

$$f_2(x) \triangleq \neg x_1$$

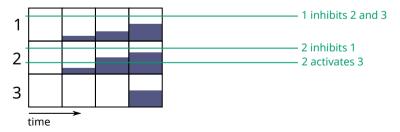
$$f_3(x) \triangleq \neg x_1 \land x_2$$

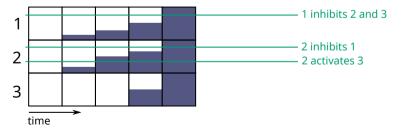
$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

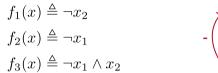
 ⇒ all configurations reachable with any update mode
 (generalized) asynchronous mode

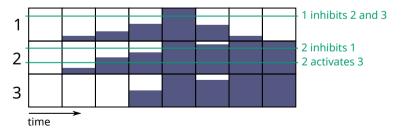
Compatible continuous/multilevel dynamics:

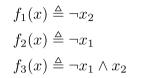
T Chatain, S Haar, L Paulevé

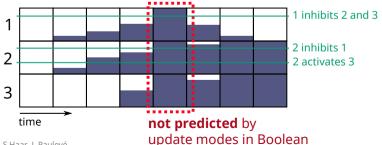




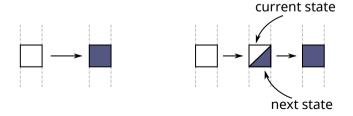


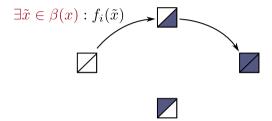


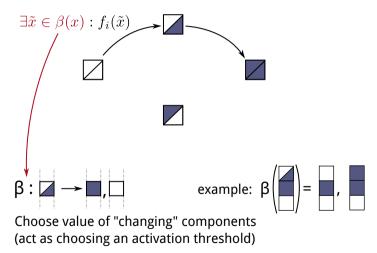


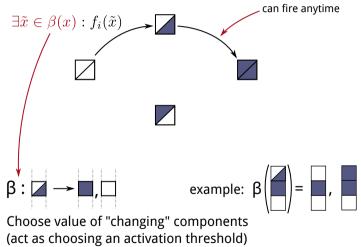


T Chatain, S Haar, L Paulevé

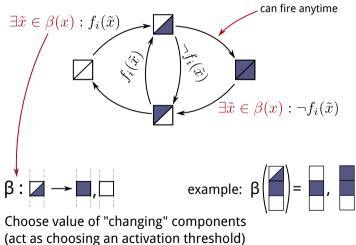

Most permissive semantics of Boolean networks enabling new behaviours

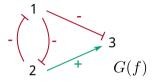

• delay between firing and application of state change

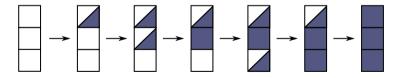

⇒ allow interleaving other state changes


• in "intermediate" states 🚺 📘

other components choose what they see

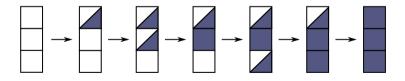






Most permissive semantics of Boolean networks Application to motivating example

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$



Most permissive semantics of Boolean networks Application to motivating example

$$f_1(x) \triangleq \neg x_2$$
$$f_2(x) \triangleq \neg x_1$$
$$f_3(x) \triangleq \neg x_1 \land x_2$$

⇒ valid with respect to multivalued refinements

Most permissive semantics of Boolean networks Properties of the most permissive semantics

Correct abstraction of multilevel/quantitative systems:

- includes all the transitions of every update mode
- multilevel refinements only remove behaviours
- Reachability (configuration y is reachable from x):
 ⇒ comput. in quadratic time (instead of PSPACE-complete)
 ⇒ no need for simulations / model-checking / ...
 - \Rightarrow should be scalable to thousands of components
- Attractors are hypercubes (minimal trap spaces)
 ⇒ finding attractors is in NP (instead of PSPACE-complete)

Most permissive semantics of Boolean networks Conclusion

Update modes of Boolean networks (sync, async, etc.):

- can miss important behaviours [CHP at AUTOMATA'18]
- ⇒ lead to reject valid models of biological systems...
- have limited tractability (model-checking, ...)

Most permissive semantics:

- correct abstraction: guarantees that adding information (multilevel, thresholds) will only remove behaviours
- simpler complexity: reachability PTIME, attractors NP
- ⇒ higher tractability

Future work: software tool, paper (report available)