Identification of Diagnostic and Therapeutic Markers in Tumor Invasion using Logic-based Modeling

Faiz Khan Rostock, Germany faiz.khan3@uni-rostock.de

08.09.2018 ECCB 18, Athens

Traditio et Innovatio

SYSTEMS BIOLOGY BIOINFORMATICS ROSTOCK

- The systems biology approach to complex diseases
- Biological question
- Workflow for identification diagnostic and therapeutic markers
 - Construction and analysis of E2F1 map
 - Identifcation of tumor specific core-regulatory network(s)
 - Dynamical analysis of core-regulatory network(s)
 - Stimulus response behavior
 - Perturbation analysis
 - Experimental and patient data validation of model predictions

The Systems Biology Approach

Khan et al. Systems Biology, Methods Molecular Biology, 1702 (2017); ISBN: 978-1-4939-7455-9

- Malignant tumors and metastasis are frequently resistant to chemotherapy.
- Therapy-induced resistance will result in recurrence and further disease progression.
- The transcription factor E2F1 has recently been identified as a key regulator in tumor invasiveness and metastasis by switching duties during carcinogenesis.

Hallmarks of cancer: Deregulation of the RB/E2F pathway

Breast Cancer

E2F1 promotes tumor progression

Cell migration and invasion

Tumor angiogenesis and metastasis

Engelmann et al., J. Mol. Cell Biol. 2014

- Which gene signatures promote the malignant phenotype?
- What the possible therapeutic candidates that can render invasive phenotype to non-invasive
- What are the mechanisms underlying E2F1 mediated drug resistance?

Workflow

Construction of modularized map of E2F1 in tumor progression

SYSTEMS BIOLOGY

BIOINFORMATICS

- Network characterization therough topological properties (e.g., node degree (ND) and betweenness centrality (BC)) which provide useful information regading the network archetecture¹.
- Node degree is the number of edges connected to a node, and
- Betweennecess centrality is the number of shortest paths from all nodes to all others that pass through that node.

- 1. Barabasi et al., Nature reviews genetics. 2004 Feb;5(2):101.
- 2. He et al., PLoS genetics. 2006 Jun 2;2(6):e88.
- 3. Jeong et al., Nature. 2001 May;411(6833):41.

Tool used: Cytoscape plugin NetworkAnalyzer

- Biological networks are enriched in recurring structural patterns called network motifs including feedback/feedforward loops¹.
- They induce non-intuitive behavior and play a crucial role in system dynamics^{1,2}.

Tool used: Cytoscape plugin NetDS

- 1. Alon U. Nature Reviews Genetics. 2007 Jun;8(6):450.
- 2. Yeger-Lotem et al., PNAS genetics. 2004 Apr 20;101(16):5934-9.

Integrative workflow

SYSTEMS BIOLOGY

BIOINFORMATICS ROSTOCK

Identification of the regulatory core: Motifs ranking

Identification of a regulatory core from the large network

Breast cancer

- Stimulus response behavior
- Perturbation analysis

- Large logic-based models are easier to analyze, compared to large systems of differential equations.
- Best choice when detailed quantitative information is not available
- Boolean models are simplest logical modeling approach

SYSTEMS BIOLOGY

ROSTOCK

Logic-based model of bladder cancer

Bladder cancer

CXCR1 EGFR TGFBR1 E2F1 FGFR1 RARA EGFR THRB IL1R1 E2F1 TGFBR2 RARA HMMR + * SMAD2 SMAD4 TRAF1 * * MYC SP1 BIRC2 FN1 ZEB1 ►SMAD3 ****** ++ ** *** CDKN2A RB1 AKT1 BIRC3 FLT4 KPNA2 SNAI1 ➤ SP1 The models are calibrated with data to recapitulate SNAI2 **TP53** the biological process as good as possible. mir_17_5p mir 200b 3p → AXIN2 NCOA3 FOXA1 mir_205_5p MDM2 BCL2 SIRT1 SFN CDH1 AKT1 < FOXO3 mir_205_5p BCL2 GSK3B SIRT1 + mir_25_3p CTNNB1 NFKB1 CTNNB1 NFKBIA LEF1 ++ SRC TWIST1 ** ** ↓ ↓ FOXO3 AXIN2 SRC SNAI2 TWIST1 LEF1 SNAI1 CHUK EMT EMT

Breast cancer

Tool used:

- ProMoT for model development; S.Mirschel et al. 2009
- yEd for graphical visualization
- CellNetAnalyzer for model simulation ; Klamt et al. 2007

BLADDER CANCER											
E2F1	TGI	BR1		FGFR1	EGFR	R CX		CR1		RARA	EMT
0		0		0	0/1		0/1		0/1		0
0	0		1		0/1		0/1		0/1		1
0	1		0		0/1		0/1		0/1		1
0	1			1	0/1		0/1		0/1		2
1		0	0		0/1		0	0/1		0/1	1
1		0		1	0/1		0/1		0/1		2
1		1	0		0/1		0/1		0/1		2
1	1 1		1		0/1		0/1		0/1		3
BREAST	BREAST CANCER										
E2F1	TGFBR	EGF	R	HMMR	VEGF	Т	HRB	IL1R	81	RARA	EMT
0	0	0		0/1	0/1		0/1	0/1		0/1	0
0	0	1		0/1	0/1		0/1	0/1		0/1	1
0	1	0		0/1	0/1		0/1	0/1		0/1	1
0	1	1		0/1	0/1	0/1		0/1		0/1	2
1	0	0		0/1	0/1		0/1	0/1		0/1	1
1	0	1		0/1	0/1	0/1		0/1		0/1	2
1	1	0		0/1	0/1		0/1	0/1		0/1	2
1	1	1		0/1	0/1		0/1 0/1			0/1	3

Khan et al., 2017, Nature comm. doi:10.1038/s41467-017-00268-2

EMT Phenotype

0	Non invasive
1	Less invasive
2	Moderately invasive
3	Highly invasive

- Our simulation results suggest that
- When E2F1, TGFBR1 and FGFR1 are simultaneously active bladder cancer cells become highly invasive (*EMT = 3*).
- 2. A similar effect was observed in breast cancer when E2F1, TGFBR2 and EGFR are simultaneously active.

Model Validation

bladder cancer patients

breast cancer patients

Classification of patients based on proposed vs. random signatures

Random signatures

SYSTEMS BIOLOGY BIOINFORMATICS ROSTOCK

SYSTEMS BIOLOGY BIOINFORMATICS ROSTOCK

Invasive cell lines

In silico perturbation for drug targets

(a) Bladder cancer											
Sigature			Double <i>in silico</i> perturbations in regulatory layer								
E2F1	TGFBR1	FGFR1	ZEB1	TWIST1	SNAI1	NFKB1	SMAD2,3,4	CDH1	EMT		
1	1	1	1	1	1	1	1	0	3		
1	1	1	0	0	1	1	0	1	1		
1	1	1	0	1	0	1	0	1	1		
1	1	1	0	0	1	0	0	1	1		
1	1	1	0	1	1	1	0	1	1		
1	1	1	1	0	1	1	0	1	1		
1	1	1	1	0	1	0	0	1	1		
(b) Breast cancer											
Sigature Double <i>in silico</i> perturbations in regulato						regulatory	layer		Output		
E2F1	TGFBR2	EGFR	SRC	FN1	SNAI1	SNAI2	CDH1		ЕМТ		
1	1	1	1	1	1	1	0		3		
1	1	1	0	1	1	1	1		1		
1	1	1	0	0	1	1	0		1		
1	1	1	0	1	0	1	1		1		
1	1	1	0	1	1	0	1		1		
1	1	1	1	0	1	1	1		1		
1	1	1	1	1	0	1	1		1		
1	1	1	1	1	1	0	1		1		
1	1	1	1	0	0	1	0		1		
1	1	1	1	0	1	0	0		1		

Khan et al., 2017, Nature comm. doi:10.1038/s41467-017-00268-2

SYSTEMS BIOLOGY

BIOINFORMATICS ROSTOCK

Model driven experimentation

Shailendra Gupta Olaf Wolkenhauer

Julio Vera

Stephan Marquardt David Engelmann Brigitte M. Pützer

Federal Ministry of Education and Research