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Our way to do modelling
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Computable & 
mechanistic model  
specific to data  

Networks

CellNOpt/ 
PHONEMeS/ 



Omnipath: Integration of existing  
pathway resources to improve modelling
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Data

Computable Model  
specific to data  
(cell/conditions)

Networks

 New sources

Turei, Korcsmaros, Saez-Rodriguez, Nature Methods, 2016

www.omnipathdb.org
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http://www.omnipathdb.org


Leveraging different proteomic platforms
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Data

Computable Model  
specific to data  
(cell/conditions)

Networks

 New sources

 - Single cell - Mass Cytometry (CyToF), live-cell imaging (CNO) 

- Antibody-based population data (protein arrays, luminex, …) (CNO)

- Mass spectrometry phospho-proteomics 
(PHONEMeS; Terfve et al Nature Comm 15) 

- More about PHONEMeS, poster presentation 
493
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From Boolean to continuous and dynamic models
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Logic ODEs (dynamic) 
 
 
 
 
 
 
 
  

 w. J Banga & J. Egea,  
B. Penalver  
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Morris et al., PloS Comp Bio 2011
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Boolean

  

sync.  
dynamics

Boolean multi  
time-scale 

David	  
Henriques	

0

1

0

1

t t Aidan	  
MacNamara	

Camille  
	Terfve	

Wittmann  
et al.  
BMC  

Sys Bio  
2009

+ detail                 - scope
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CellNOpt: Fitting to data is an optimisation 
problem that we solve with different methods
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Data

Computable Model  
specific to data  
(cell/conditions)

Networks

CellNOpt
Learning algorithms 
(optimization): 

- Metaheuristics  & Bayesian 
Inference (MCMC)  
(Egea et al. BMC Bioinf 2014;  
(Henriques et al. Bioinf 2015) 

- Ensembles of models 
(Henriques et al. PLoS CB, 
2017) 

- Use of Answer Set 
Programming (Guziolowski et 
al. Bioinf 2013, Videla et al. 
Bioinf 2017) and Integer Linear 
Programming (Mitsos et al 
PLoS CB 2009) 



New CellNOpt features
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• New extended features of CellNOpt 
•CNO-ILP (ILP implementation of CellNOpt) 
•Feeder (applied on boolean and dynamic modelling) 
•CNOProb (quant i tat ive analysis whi le retaining 

computational efficiency) 
•CellNOpt-MaBoSS (asynchronous update strategy with 

optimisation strategy to train the boolean logic models) 
•Post-hoc systematic analysis (analysis of the reliability of 

the parameters)



Reasons to use CNO-ILP
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Suitable for obtaining family of models with guaranteed optimality (when/if reached)

Suitable for the boolean modelling of big PKN’s

Retrieving family of models within a certain tolerance from the optimality and 
constrained model size



Dealing with incomplete prior knowledge
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CNOFeeder: Link CellNOpt to methods to infer new 
links 

 

New updates on CNOFeeder allows the inference of 
new links while doing dynamic analysis of the networks

Combining PKN with databases of interactions



Building causal and dynamic network models 
from perturbation data

20

 →  gene expression changes 
      

 → (phospho)proteomics 
 

Perturb cells  
with drugs and/or ligands  
and measure

Proteomic platforms are expensive



Building causal and dynamic network models 
from perturbation data

21

 →  gene expression changes 
      

 → (phospho)proteomics 
 

Perturb cells  
with drugs and/or ligands  
and measure

Can we leverage cheaper platforms 
to do modelling ??



CARNIVAL: CAusal Reasoning for Network 
Identification using Integer VALue programming

22
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Deriving perturbation-response signatures for 12 pathways

A. Workflow of data curation and model building. (1) Finding and curation of 208 publicly available experiment series in the ArrayExpress 
database, (2) Extracting a total of 556 perturbation experiments from series' raw data, (3) Performing QC metrics and discarding failures, (4) 
Computing z-scores per experiment, (5) Using a multiple linear regression to fit genes responsive to all pathways simultaneously obtaining the 
z coefficients matrix, (6) Assigning pathway scores using the coefficients matrix and basal gene expression data.

B. Structure of the perturbation-response model. For the multiple linear regression, we set the coefficients of perturbed pathways to 1 if a 
pathway was perturbed, 0 otherwise. In addition, EGFR perturbation also had MAPK and PI3K coefficients set, and TNFa had NFkB set.

C. Overview of enriched Gene Ontology categories for the 100 genes selected to be in the pathway signature. In part they are expected (MAPK 
and EGFR drive the cell cycle, while p53 inhibits it; Hypoxia includes signature genes highly enriched for the hypoxic response), but some 
categories bear no relation to the input experiment (no LPS in Trail-perturbed experiments, neither for TNFa - but the latter correlates with 
NFkB, which was perturbed using LPS).

D,E. Pathway recall on input experiments. The outer ring shows which pathway was perturbed in the experiments used, and the target of an 
outgoing edge a significant correlation of the pathway being perturbed and a change in pathway score, compared to all other perturbations. 
Occupied angle coresponds to effect size. D. The mean difference in assigned pathway scores between basal and perturbed condition per 
experiment is strongly correlated with the pathway that was perturbed, as indicated by a mountain on the outer ring. This implies that building 
consensus response signatures are able to recover perturbed pathways (* p < 10-5, *** p < 10-10). E. Comparison of pathway expression. 
Links from the outher circle correspond to which targetpathway changes expression when the former is perturbed.
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Networks
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Transcriptomic

predicted  
protein activities optimised network

Coming	soon	at		saezlab.github.io/CARNIVAL/

Data



Take home messages..

•Which is the family of best model solutions? How do 
we know they are the best? 
• ILP & ASP (Caspo) methods can help 

• Is my prior knowledge complete? How well is this 
system studied and can I rely on current knowledge? 
•Feed what might be missing 

•Signalling networks from RNA-seq gene expression data? 
•CARNIVAL
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