

5th International Hands-on tutorial on logical modeling

Tomas Helikar

www.cellcollective.org || www.helikarlab.org || @helikarlab || thelikar2@unl.edu

Department of Biochemistry University of Nebraska at Lincoln, USA

Juilee Thakar

https://www.urmc.rochester.edu/labs/thakar.aspx || Juilee_Thakar@URMC.Rochester.edu University of Rochester, Medical Center, USA

Schedule

9:00-9:15 Welcome and Introduction to logical modeling frameworks 9:15-10:30 CellNOpt: Julio Saez-Rodriguez 10:30-11:00 Coffee break 11:00-12:30 Cell Collective: Tomas Helikar 12:30-13:30 Lunch break

13:30-15:00 GINsim: Aurelien Naldi & Denis Thieffry
15:00-15:30 Coffee break
15:30-17:00 CoLoMoTo Interactive Notebook: Loïc Pauleve

Network Modeling Methods

Bottom up vs top down modeling

Logical (Boolean) Modeling

Stuart Kauffman (1969)

- •Generic model of gene regulatory network with nodes with predefined in-degree, random connections
- •Deterministic behavior defined by a Boolean function

Rene Thomas (1973)

•Specific gene regulatory networks

Variants of the formalism

- Multivalued variables {0,1,2}
- Time delays (multiple time scales)
- Semi-continuous input/output
- Specific classes of logical functions, e.g. threshold function (sum of regulatory effects relative to a threshold)

Control networks

variable set to a fixed value, sampled, specific signal sequence

Examples of investigations of logical models

What are the attractors (long term behaviors)?

Stable states (all components are stable)

Cyclical attractors (oscillations)

What are their reachability properties? e.g.

- Is a given attractor reachable from a given initial state?
- What are the properties along the trajectories leading to an attractor?

What are the properties upon model perturbations? e.g.

- Knock-out \rightarrow variable maintained to 0
- Gain-of-function \rightarrow variable maintained to 1

How does the environment effect the dynamics? (control networks)

- Combinatorial explosion of the number of states with the number of components (2ⁿ states for *n* network components)
- Scalability of creating large-scale and accurate models
- Model transparency (can I believe the model?)
- Model (re-)usability and sharing

Models and Model repositories

Cell Collective (www.cellcollective.org) http://ginsim.org/models_repository Biomodels.net

Tools (not exhaustive!)

Tool	Range	Updating	Feature	Syst. Req.
Adam	Multi-val	Seq/Sync	SS & CA	Web serv
BooleanNet	Bool	A/Sync, Time sync, Stoch async	Switch to PLDE Attractors (reduc.)	Python
BoolNet	Bool	A/Synch, Stoch async	RBN generation	R
Cell Collective	Bool	A/Sync, Time Delay, Thresholds	Stochastic, Real-time	Online
CoLoMoTo Interactive Notebook	Mixed	A/Sync, Time sync, Stoch async	Integrative	Docker
CellNetAnalyzer	Bool	-	Structural analysis (Mini. Int. Sets)	Matlab
CellNOpt	Bool	Sync	Model training, Fuzzy Logic, ODE	R / Cytoscape plugin
GINsim	Multi-val	A/Sync, priorities	Stable states, functionality, HTG	Java
MaBoss	Bool	continuous/discrete time Markov processes		C++
PyBoolNet	Bool	A/Sync	Attractors, Model Checking	Python

A community effort for standardization has been launched (CoLoMoTo) http://colomoto.org

- SBML Level 3 Qualitative Model Package Version 1
- A standard format to store logical models
- LogicalModel library github.com/colomoto

Community Efforts

Logical Modeling and Dynamical Analysis of Cellular Networks

Wassim Abou-Jaoudé¹, Pauline Traynard¹, Pedro T. Monteiro^{2,3}, Julio Saez-Rodriguez⁴, Tomáš Helikar⁵, Denis Thieffry¹ and Claudine Chaouiya^{3*}

Lisbon, PT, 2010 (meeting) Hinxton, UK, 2012 (meeting) Paris, FR, 2013 (COMBINE – SBML gual) Lausanne, SUI, 2014 (meeting) Copanhagen, DK, 2014 (ECCB – workshop) Basel, SUI, 2015 (BC2 – tutorial) Singapore, 2015 (ICSB – tutorial + workshop) Barcelona, SP, 2016 (ICSB – tutorial) Blacksburg, Virginia, 2017 (ICSB – tutorial)

Systems Biology

Matteo Barberis and Tomáš Helikar (Eds.)

open-access publisher and research network

Logical Modeling of Cellular Processes:

From Software Development to Network Dynamics

Frontiers in Systems Biology

Specialty Chief Editor: Hiroaki Kitano

