Trap-spaces, attractor basins: towards a global attractor reachability map

Approximation of complex attractors

A model can have multiple stable states and complex attractors

Approximation of complex attractors

Wrapping each attractor into the smallest sub-space

Attractors and trap-spaces

Trap-space

Hypercube (partial assignment) in which the system can be trapped

- Stability for some components $g_3 = g_4 = g_5$
- Local dimension reduction
- Driven by positive circuits
- Identified by constraint solving

Trap-spaces delineate iterative commitment

Trap-spaces delineate iterative commitment

Trap-spaces delineate iterative commitment

Recent and ongoing refinements

- Inclusion tree provides reachability insights
- Percolation of downstream components
 - Reduce the number of trap-spaces
 - Percolated sub-space is always reachable
- Integration into GINsim

л

Recent and ongoing refinements

- Inclusion tree provides reachability insights
- Percolation of downstream components
 - Reduce the number of trap-spaces
 - Percolated sub-space is always reachable
 - Some commitment paths difficult to detect
- Integration into GINsim

Summary and practical use

- Catches most cyclic attractors in existing biological models
 - Can be checked and refined if needed
- Relation with circuits still unclear
- Works well on large models with few inputs
- Adding inputs: exponential number of attractors
 - Consider specific subsets of input combination
 - Identify inputs compatible with a "target" phenotype
- Coarse-grained global reachability map
 - Refinement strategies to be improved