TECNICO
LISBOA

. .
— \ . . E : §
ElgaSC id 3'6 FUNDAGAO CALOUSTE GULBENKIAN

Instituto Gulbenkian de Ciéncia

On the structure and robustness of gene regulatory network Boolean
functions

Pedro T. Monteiro>  José E. R. Cury?  Claudine Chaouiya®

1INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, PT
2Departamento de Automac3o e Sistemas, Universidade Federal de Santa Catarina, Florianépolis, BR

3|nstituto Gulbenkian de Ciéncia, Oeiras, PT

2017-07-18

Monteiro, Cury, Chaouiya IV CoLoMoTo meeting @ ENS, Paris



Outline

Biological motivation

Monteiro, Cury, Chaouiya

IV CoLoMoTo meeting @ ENS, Paris

2/32



Background

Logical (Boolean) regulatory graphs

e G is a set of n regulatory components g;

@ @ Logical (Boolean) regulatory graph R = (G, F):
¢, ‘ .
O
1 o

® [I;cc{0,1} defines the state space S

e Fis a set of regulatory functions Fg;; € F: S — {0,1}
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e Fis a set of regulatory functions Fg;; € F: S — {0,1}
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Biological motivation
Dynamic behaviour of a GRN

Modelling procedure (simplified):
o Define the set of components
e Define their signed influences

o Define the functions regulating each component
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Biological motivation
Dynamic behaviour of a GRN
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Q: How to choose the “correct” function(s)?
o Are all regulatory interactions functional?
o |s the function compliant with the regulator sign?

e Is the function “robust” to changes?



Outline

Structure of Boolean functions

Monteiro, Cury, Chaouiya

IV CoLoMoTo meeting @ ENS, Paris



Boolean functions

Number of Boolean functions
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Boolean functions

Number of Boolean functions

1 regulator
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|Kg, | = 22" Combinatorial explosion!

Includes functions which are:

- Degenerate (non-functional regulators)



Boolean functions

Number of Boolean functions

1 regulator
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n regulators
n - . .
|Kg;,| = 2°° Combinatorial explosion!

Includes functions which are:
- Degenerate (non-functional regulators)
- Non-monotone (regulators with dual role)
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Boolean functions
Compatible with a GRN topology

Given an LRG (G,K), we denote G, the set of
regulators of g.

— ct -
G, =G UG,
G, : set of positive regulators
G, : set of negative regulators
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Boolean functions
Compatible with a GRN topology

Given an LRG (G,K), we denote G, the set of
@ Y regulators of g.

G =G UG,
G, : set of positive regulators

G, : set of negative regulators

G, = {81, 8, 83}
Gs ={g. &} G ={g}

Recall that F, denotes the set of functions f, compatible with the structure defined
by Gg



Boolean functions
Compatible with a GRN topology

fg € Fg can be written in the Disjunctive Normal Form (DNF)

fp=C V-V Cn

C,': /\ uy I:{l,,m}

k€EE;CGg
which must satisfy the following conditions:

® Vgi € Gg,3j for which k € E;
all regulators are functional
f +
. uk:{ ax, if gk € G

—qk, if gk € Gg
regulators do not have a dual role
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Boolean functions
Compatible with a GRN topology

fg € Fg can be written in the Disjunctive Normal Form (DNF)

fp=C V-V Cn

C,': /\ uy I:{l,,m}

k€EE;CGg
which must satisfy the following conditions:

® Vgi € Gg,3j for which k € E;
all regulators are functional
f +
. uk:{ ax, if gk € G

—qk, if gk € Gg
regulators do not have a dual role

Also known as:

- Blake canonical form (Blake 1937)

- Complete DNF, i.e., the complete list of the prime implicants of f
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Boolean functions
Compatible with a GRN topology

Examples:
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Boolean functions
Compatible with a GRN topology

Q—

Examples:
foo =81V (g2 N —gs)
fo = (81 A —g3) V (&2 A —g3)

fo =81V (g2 A—g1)
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Boolean functions

What is the size of |F,|?

Given n variables:

n .
® 22" _ number of all Boolean functions

® |D(n)| - number of all monotone Boolean functions (Dedekind number)

® |F(n)| - number of non-degenerate monotone Boolean functions

D(n) not known for n > 8!

n—1

n 2% D(n) [F(n)|
1 4 3 (Dedekind 1897) 1
2 16 6 (Dedekind 1897) 2
3 256 20 (Dedekind 1897) 9
4 65536 168  (Dedekind 1897) 114
5 | 4294967296 7581  (Church 1940) 6894
6 1.8 x 10% 7828354  (Ward 1946) 7785062
7 3.4 x 10%® | 2414682040998  (Church 1965) 2414627396 434
8 1.2 x 107 5.6 x 10 (Wiedemann 1991) 5.6 x 10%

Il = D(m) =2 = 3= 2o 1FG)



Boolean functions

How is the set Fg organised?

Given any two Boolean functions f, f’, in n variables:

F<f iff fx)=1= f(x)=1

Given the set F; and the relation <:
e < is a Partial Order relation on F,
o (Fg, <) defines a Partial Order set



Boolean functions

Fg organised as a Partial Order set

sup Fpy = g1V Vg

{1h{23.{3}}
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inf Fgy = g1 Ag2 N g3

Hasse Diagram of F(3), with its 9 functions
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Boolean functions

Fg organised as a Partial Order set

sup Fpy = g1V Vg

{1h{23.{3}}

/

=81V (e g3)

(a)— G G Cimm

023123
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. 1.2}.{13
Set representation of f; @)

(indices of the literals in the

clauses) N

/U\

\

{{1.2.3}}

inf Fgy = g1 Ag2 N g3

Hasse Diagram of F(3), with its 9 functions

inf Fg, =X fi =X sup Fg
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Boolean functions

Fg organised as a Partial Order set

T

T 01 a1 A 0]
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AT I 2341 7

Hasse Diagram of F(4) - has 114 functions
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Boolean functions
Neighbourhood characterization of f; in the PO Set

Given g and its regulators, for two functions f, f’ € Fg:
e f’is said to be a “parent” of f (resp. f a “children” of f') in the PO-Set (Fg, =) iff:

f X f'and }f" € Fg s.t. f X f"and " < f'

R3 3 TR3.

For each function f, we define two sets

of rules to compute:

e the set of all its “parents”: 3 rules

e the set of all its “children”: 3 rules

(Cury, Monteiro, Chaouiya, in preparation )




Boolean functions

Number of states where f is true

Given any two functions f, f' s.t. f'is a “parent’ of f:

e there is never more than 2 states of difference

(Cury, Monteiro, Chaouiya, in preparation )
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Stochasticity & robustness in regulatory networks
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Stochasticity in gene regulatory networks

PBN - Probabilistic Boolean networks

PBN - Probabilistic Boolean networks

e Model the choice between alternate biological functions for activation of gene/protein

(Shmulevich et al., Bioi ics 2002)

Monteiro, Cury, Chaouiya IV CoLoMoTo meeting @ ENS, Paris



Stochasticity in gene regulatory networks
SIN - Stochasticity in nodes

SIN - Stochasticity in nodes
e Nodes are flipped from 0 to 1 (or vice-versa) with some predefined probability
o Regardless of the susceptibility to stochasticity of the underlying function

(Ribeiro and Kauffman, J. Theor. Biol. 2007)
(Davidich and Bornholdt, PLoS ONE 2008)

(Alvarez-Buylla et al., PLoS ONE 2008)



Stochasticity in gene regulatory networks
SIF - Stochasticity in functions

SIF - stOChaStiCity in functions (Garg et al., Bioinformatics 2009)
e associates a probability of failure with different functions
e models stochasticity in these functions depending upon the expression of the
input nodes
BUFF :f5(xa)=[(xc <> 0) A A1V [(xc <> xa) A—A]

NOT :fN (xg) =[(xc & DA AV [(xe < —xg) A—A]

i=1

AND: A1, .. p) =[(xc <> O A ATV

P
|:(xp < /\xi)A—-A]

i=l1
P
IAND:f’A(xI ,,,,, xXp)=| {xc /\ XNIAA [V

J=1

P »
|:{xc < (/\—xf” A /\xj‘-’)) A—|A:|

i=1 j=1



Stochasticity in gene regulatory networks
SIF - Stochasticity in functions

SIF - Stochasticity in functions (Garg et al., Bioinformatics 2009)
e associates a probability of failure with different functions

e models stochasticity in these functions depending upon the expression of the
input nodes

Table 1. Truth tables representing the transfer function of different Boolean logic gates. A and B are the input genes, C represents the output gene expression
in the absence of stochasticity and C represents the output gene expression in the presence of stochasticity under the STF model.

S et e TR R

AlB|c]|C AlB|cC]||C AlB|cC]||C

. . 0[0[0][0 0[0[0] 0 0[o0[0][0

Alc]l ¢ Alc]lC 0[1]0][0 0111 01 [1][0

000 011 1T[0]0[0 T[o[1]1 1[0[0][0
T[1[[0 T[o[1 T[1[1][0 NEEIE T[1[o]1
(a) BUFF (b) NOT (c) AND (d) OR (e) IAND

onteiro, Cury, Chaouiya IV Cc
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Model application

T-helper differentiation network
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The Th network. The regulatory network that controls the differentiation process of T helper cells. Positive regulatory
interactions are in green and negative interactions in red.

(Mendoza and Xenarios, Theor. Biol. Med. Model. 2006)

e From percursor ThO cells to Thl or Th2 effector cells
upon the presence of cytokines IFN~ or IL4, respectively

Monteiro, Cury, Chaouiya IV CoLoMoTo meeting @ ENS, Paris



Model application

T-helper differentiation network

Cell type signatures (stable states):
GATA3 IFNy IL4 IL4R JAK1 SOCS1 STAT1

Tho 0 0 0 0 0 0 0
Thl 0 1 0 0 0 1 0
Th2 1 0 1 1 0 0 0

ThO cells in response to an IFN~ stimuli
e differentiate to Thl

e cannot differentiate to Th2
(Murphy and Reiner, Nat. Rev. Immunol. 2002)

Thbet
0
1
0

IFNb
0
0
0



Stochasticity in gene regulatory networks

T-helper differentiation network

122222222222222222220002

(d) ThO to Th1 in SIF model

(b) ThO to Th1 (c) ThO to Th1 in SIN model

(a) ThO Cell State

Fig. 4. Simulation results showing the effect of noise on T-helper cell differentiation process with an external stimulus of IFNy. Each small circle is

d ThO

the naive

cells, green cells represent Thl cell state and blue cells represent Th2 cell state. Ratio of number of red (green or blue) cells to total number of cells in a

panel is

representative of a T-helper cell and each cell is modeled to behave independent of the neighboring cells. Red cells

ing into ThO (Th1 or Th2) cell state. (a) Cell culture maintained in ThO state. (b) In absence of any

to Th1 cell state on receiving IFNy. (¢) ThO cells differentiate into Th1 and Th2 under the SIN model of stochasticity.

of the probability of diff

all ThO cells
Few cells revert to ThO state as seen by the few patches of red color. (d) SIF model of stochasticity shows that ThO cells differentiate into Thl cells while

some cells cannot differentiate on receiving IFNy and revert to ThO cell state. None of the cells differentiate into Th2 cell state. The probability of failure

(i.e. €) is 0.5 for all the nodes (functions) in the SIN model (SIF model).

(Garg et al., Bioinformatics 2009)

23/32
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Experimental results
Deterministic setting - fgaTa3s

e Synchronous simulation

o All monotone non-degenerate
functions for fgaras

e Reference f(;ATAg =
(!Tbet & GATA3) | (!Tbet & STAT6)

Legend:

1 - !Tbet
2 - GATA3
3 - STAT6

Thl - green nodes
Th2 - blue nodes
Solid node - non-degenerate function

Dashed node - degenerate function



Experimental results
Deterministic setting - fgaTa3s

e Synchronous simulation

e All monotone non-degenerate

functions for fgaras -

e Reference foamaz =
(ITbet & GATA3) | (!Tbet & STAT6) _

Legend:

L e S
2 - GATA3

3 - STAT6

Thl - green nodes i{1,2.3}}/

Th2 - blue nodes
Solid node - non-degenerate function

Dashed node - degenerate function
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Experimental results
Deterministic setting - fgaTa3s

e Synchronous simulation

e All monotone
functions for fcaras

e Reference foaraz =
(!Tbet & GATA3) | (!Tbet & STAT6)

{21131}
/
/

<I§E5§i> o

Legend:

1 - !Tbet
2 - GATA3
3 - STAT6

Thl - green nodes
Th2 - blue nodes

Solid node - non-degenerate function

Dashed node - degenerate function < False >
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Experimental results
Deterministic setting - fi4

e Synchronous simulation

o All monotone non-degenerate
functions for firs

e Reference f11q =
GATA3 & !STAT1

Legend:
1 - GATA3
2 - ISTAT1

Thl - green nodes
Th2 - blue nodes
Solid node - non-degenerate function

Dashed node - degenerate function

onteiro, Cury, Chaouiya
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Experimental results

Deterministic setting - fi4

e Synchronous simulation

e All monotone
functions for f1r4

e Reference f11q =
GATA3 & !'STAT1

)
Legend:
1 - GATA3
2 - ISTAT1

Thl - green nodes
Th2 - blue nodes
Solid node - non-degenerate function

Dashed node - degenerate function

Monteiro, Cury, Chaouiya IV CoLoMoTo meeting @ ENS, Paris
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Experimental results

Deterministic setting - frpet

e Synchronous simulation
o All monotone non-degenerate
functions for frpet

e Reference frper =
(!GATA3 & STAT1) | (!GATA3 & Tbet)

1 - !GATA3
2 - STAT1

3 - Thet Gz

ThO - red nodes
Thl - green nodes

Legend: ST

Solid node - non-degenerate function

Dashed node - degenerate function
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Experimental results
Deterministic setting - frpet

e Synchronous simulation a»
e All monotone
functions for frpet

e Reference frper =
(!GATA3 & STAT1) | (!GATA3 & Tbet)

Legend:

1 - IGATA3
2 - STAT1
3 - Tbet

ThO - red nodes
Thl - green nodes

Solid node - non-degenerate function

e

Dashed node - degenerate function
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Experimental results

Deterministic setting

Q: How to choose the “correct” function(s)?
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Experimental results
Deterministic setting

Q: How to choose the “correct” function(s)?

AN
Ny
N
/.,
/ //
AN /
Gaap

Cralse)

Given a reference function could we suggest alternative functions which are:
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Experimental results

Deterministic setting

Q: How to choose the “correct” function(s)?

CFalse

Given a reference function could we suggest alternative functions which are:

e at maximum distance d
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Experimental results

Deterministic setting

Q: How to choose the “correct” function(s)?

)

Given a reference function could we suggest alternative functions which are:

e at maximum distance d
e more general/specific functions
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Experimental results

Deterministic setting

Q: How to choose the “correct” function(s)?

s e S

Given a reference function could we suggest alternative functions which are:
e at maximum distance d
e more general/specific functions

add/remove degenerate functions

~
=
o

>MoTo meeting @ ENS, Paris
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Experimental results
Non-deterministic setting - fgatas

At each time step, choose between:

e All (20) monotone functions for featas
with equal probability (of 0.05)



Experimental results

Non-deterministic setting - fgatas

At each time step, choose between:

e All (20) monotone functions for featas
with equal probability (of 0.05)

900 simulations:

Tho - 41
Thl - 305
Th2 - 554
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Experimental results
Non-deterministic setting - fgatas

At each time step, choose between:

o 0.8 reference fearas =
(!Tbet & GATA3) | (!Tbet & STAT6)

e 0.2 its neighbours

900 simulations:

ThO - 2
Thl - 744
Th2 - 154
Monteiro, Cury, Chaouiya IV CoLoMoTo meeting @ ENS, Paris
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Experimental results

Non-deterministic setting - fgatas

At each time step, choose between:

e (.8 reference foataz =
(!Tbet & GATA3) | (!Tbet & STAT6)

e 0.2 its more specific neighbours

900 simulations:

ThO -0
Thl - 900
Th2-0
Monteiro, Cury, Chaouiya IV CoLoMoTo meeting @ ENS, Paris
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Food for thought...

Questions for the working group
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Food for thought...

Questions for the working group

Using the Boolean functions PO set:
e is the reference function robust to changes?

e should we define instead classes of models (sets of functions)?



Food for thought...

Questions for the working group

Using the Boolean functions PO set:
e is the reference function robust to changes?

e should we define instead classes of models (sets of functions)?

Building Boolean models from regulatory maps, upon insuficient knowledge:
e should a default function be atributed?
if so, a more specific or more general one (lower or higher in the PO set)?

— e.g. at least one activator and no inhibitor
— e.g. canalyzing functions

e or should we consider (algorithmically support?) incomplete models?



Thank you!

Questions?!
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