

On the structure and robustness of gene regulatory network Boolean functions

Pedro T. Monteiro¹ José E. R. Cury² Claudine Chaouiya³

¹INESC-ID/Instituto Superior Técnico, Universidade de Lisboa, PT

²Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, Florianópolis, BR
³Instituto Gulbenkian de Ciência. Oeiras. PT

2017-07-18

Outline

Biological motivation

Structure of Boolean functions

Stochasticity & robustness in regulatory networks

Background

Logical (Boolean) regulatory graphs

Logical (Boolean) regulatory graph $\mathcal{R} = (G, F)$:

- G is a set of n regulatory components g_i
- $\prod_{g_i \in \mathcal{G}} \{0,1\}$ defines the state space \mathcal{S}
- ullet F is a set of regulatory functions $F_{g_i} \in F: \mathcal{S}
 ightarrow \{0,1\}$

Background

Logical (Boolean) regulatory graphs

Logical (Boolean) regulatory graph $\mathcal{R} = (G, F)$:

- G is a set of n regulatory components g_i
- $\prod_{g_i \in G} \{0,1\}$ defines the state space ${\mathcal S}$
- ullet F is a set of regulatory functions $F_{g_i} \in F: \mathcal{S}
 ightarrow \{0,1\}$

State transition graph

represents the dynamical behaviour of a LRG, where:

- nodes represent states
- edges possible transitions between successor states

Dynamic behaviour of a GRN

Modelling procedure (simplified):

- Define the set of components
- Define their signed influences
- Define the functions regulating each component

111

101

100

Dynamic behaviour of a GRN

$$f_{g_2} = \neg g_3$$

Dynamic behaviour of a GRN

$$f_{g_3} = \neg g_2$$

Dynamic behaviour of a GRN

$$\textit{f}_{\textit{g}_{1}} = \stackrel{?}{\neg} \textit{g}_{1} \vee \stackrel{?}{/} \wedge \stackrel{?}{\neg} \textit{g}_{2} \vee \stackrel{?}{/} \wedge \stackrel{?}{\neg} \textit{g}_{3}$$

Dynamic behaviour of a GRN

$$f_{g_1} = \stackrel{?}{\neg} g_1 \vee \stackrel{?}{\wedge} \stackrel{?}{\neg} g_2 \vee \stackrel{?}{\wedge} \stackrel{?}{\neg} g_3$$

Q: How to choose the "correct" function(s)?

- Are all regulatory interactions functional?
- Is the function compliant with the regulator sign?
- Is the function "robust" to changes?

Outline

Biological motivation

Structure of Boolean functions

Stochasticity & robustness in regulatory networks

Number of Boolean functions

$1\ {\bf regulator}$

Α	ш	M	⋖	\vdash	
0	0	1	0	1	
1	0	0	1	1	

Number of Boolean functions

1 regulator

Α	ш	M	⋖	\vdash
0	0	1	0	1
1	0	0	1	1

2 regulators

Α	В		<	<		<		\oplus	>	<	\downarrow		>		>	>	-	
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
	0 0 1	0 0 0 1 1 0	A B L 0 0 0 0 1 0 1 0 0	A B L 4 0 0 0 1 0 1 0 0 1 0 0 0	A B LL I I 0 0 0 1 0 0 1 0 0 1 1 0 0 0 0	A B L I I I 0 0 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0	A B LL I I I I I I 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1	A B LL I	A B LL IT IT <th>A B L IQ IQ</th> <th>A B LL X <td< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>A B LL IR <th< th=""><th>A B L q</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th></th<></th></td<></th>	A B L IQ IQ	A B LL X <td< th=""><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>A B LL IR <th< th=""><th>A B L q</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th></th<></th></td<>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B LL IR IR <th< th=""><th>A B L q</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th><th>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</th></th<>	A B L q	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Number of Boolean functions

$1\ {\sf regulator}$

Α	ഥ	M	⋖	\vdash
0	0	1	0	1
1	0	0	1	1

2 regulators

			B	В		B		В	B	В	æ		В		B	В	
						<											
Α	В	ш	A	A	A	A	B	A	M	A	A	В	M	A	A	A	\vdash
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

n regulators
$$|K_{g_i}| = 2^{2^n}$$
 Combinatorial explosion!

Number of Boolean functions

1 regulator

Α	ш	M	⋖	\vdash
0	0	1	0	1
1	0	0	1	1

2 regulators

			B	В		B		В	B	В	Ψ		В		B	В		
	_																	
Α	В	1	A	A	A	A	B	A	A	A	A	В	M	A	A	A	\vdash	
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	

n regulators

$$|K_{g_i}| = 2^{2^n}$$
 Combinatorial explosion!

Includes functions which are:

- Degenerate (non-functional regulators)

Number of Boolean functions

1 regulator

Α	ш	M	⋖	\vdash
0	0	1	0	1
1	0	0	1	1

2 regulators

			B	В		B		B	B	В	Щ		В		B	В	
			<	<		<		\oplus	>	<	1		>		>	>	
Α	В	ш	M	A	A	A	B	A	M	A	A	B	M	A	A	A	\vdash
0	0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	0	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

n regulators

$$|K_{g_i}| = 2^{2^n}$$
 Combinatorial explosion!

Includes functions which are:

- Degenerate (non-functional regulators)
- Non-monotone (regulators with dual role)

Compatible with a GRN topology

Given an LRG (G, \mathcal{K}) , we denote G_g the set of regulators of g.

 $G_{g} = G_{g}^{+} \bigcup G_{g}^{-}$

 G_g^+ : set of positive regulators G_g^- : set of negative regulators

Compatible with a GRN topology

$$G_{g_1} = \{g_1, g_2, g_3\}$$

 $G_{g_1}^+ = \{g_1, g_2\}$ $G_{g_1}^- = \{g_3\}$

Given an LRG (G, \mathcal{K}) , we denote G_g the set of regulators of g.

 $G_g = G_g^+ \bigcup G_g^-$

 G_g^+ : set of positive regulators G_g^- : set of negative regulators

Compatible with a GRN topology

$$G_{g_1} = \{g_1, g_2, g_3\}$$

 $G_{g_1}^+ = \{g_1, g_2\}$ $G_{g_1}^- = \{g_3\}$

Given an LRG (G, \mathcal{K}) , we denote G_g the set of regulators of g.

$$G_g = G_g^+ \bigcup G_g^-$$

 G_g^+ : set of positive regulators G_g^- : set of negative regulators

Recall that F_g denotes the set of functions f_g compatible with the structure defined by G_g

Compatible with a GRN topology

 $f_g \in F_g$ can be written in the Disjunctive Normal Form (DNF)

$$f_g = C_1 \lor \dots \lor C_m$$
 $C_i = \bigwedge_{k \in E_i \subset G_g} u_k \qquad i = \{1, \dots, m\}$

which must satisfy the following conditions:

- $\forall g_k \in G_g, \exists j \text{ for which } k \in E_j$ all regulators are functional
- $u_k = \begin{cases} q_k, & \text{if } g_k \in G_g^+ \\ \neg q_k, & \text{if } g_k \in G_g^- \end{cases}$ regulators do not have a dual role

Compatible with a GRN topology

 $\mathit{f_g} \in \mathit{F_g}$ can be written in the Disjunctive Normal Form (DNF)

$$f_g = C_1 \lor \cdots \lor C_m$$

$$C_i = \bigwedge_{k \in E_i \subseteq G_g} u_k \qquad i = \{1, \dots, m\}$$

which must satisfy the following conditions:

- $\forall g_k \in G_g, \exists j \text{ for which } k \in E_j$ all regulators are functional
- $u_k = \left\{ egin{array}{ll} q_k, & \mbox{if } g_k \in G_g^+ \\ \neg q_k, & \mbox{if } g_k \in G_g^- \end{array} \right.$ regulators do not have a dual role

Also known as:

- Blake canonical form
- Complete DNF, i.e., the complete list of the prime implicants of f

(Blake 1937)

Compatible with a GRN topology

Examples:

$$f_{g_1} = g_1 \vee (g_2 \wedge \neg g_3)$$

Compatible with a GRN topology

Examples:

$$f_{g_1} = g_1 \lor (g_2 \land \neg g_3)$$

$$f_{g_1} = (g_1 \land \neg g_3) \lor (g_2 \land \neg g_3)$$

...

Compatible with a GRN topology

Examples:

$$f_{g_1} = g_1 \lor (g_2 \land \neg g_3)$$

 $f_{g_1} = (g_1 \land \neg g_3) \lor (g_2 \land \neg g_3)$
...
 $f_{g_1} = g_1 \lor (g_2 \land \neg g_1)$

What is the size of $|F_g|$?

Given n variables:

- 22n number of all Boolean functions
- |D(n)| number of all monotone Boolean functions (Dedekind number)
- ullet |F(n)| number of non-degenerate monotone Boolean functions

n	2 ^{2ⁿ}	D(n)		<i>F</i> (<i>n</i>)
1	4	3	(Dedekind 1897)	1
2	16	6	(Dedekind 1897)	2
3	256	20	(Dedekind 1897)	9
4	65 536	168	(Dedekind 1897)	114
5	4 294 967 296	7 581	(Church 1940)	6 894
6	1.8×10^{19}	7 828 354	(Ward 1946)	7 785 062
7	3.4×10^{38}	2 414 682 040 998	(Church 1965)	2 414 627 396 434
8	1.2×10^{77}	5.6×10^{22}	(Wiedemann 1991)	5.6×10^{22}

D(n) not known for n > 8!

$$|F(n)| = D(n) - 2 - \sum_{i=1}^{n-1} \frac{n}{i!(n-i)!} |F(i)|$$

How is the set F_g organised?

Given any two Boolean functions f, f', in n variables:

$$f \leq f'$$
 iff $f(x) = 1 \implies f'(x) = 1$

Given the set F_g and the relation \leq :

- ullet \preceq is a Partial Order relation on F_g
- (F_g, \preceq) defines a **Partial Order set**

F_g organised as a Partial Order set

Hasse Diagram of F(3), with its 9 functions

F_g organised as a Partial Order set

Hasse Diagram of F(3), with its 9 functions

 $\inf F_{g_1} \leq f_{g_1} \leq \sup F_{g_1}$

F_g organised as a Partial Order set

Hasse Diagram of F(4) - has 114 functions

Neighbourhood characterization of f_g in the PO Set

Given g and its regulators, for two functions $f, f' \in F_g$:

• f' is said to be a "parent" of f (resp. f a "children" of f') in the PO-Set (F_g, \preceq) iff:

$$f \preceq f' \text{ and } \nexists f'' \in F_g \text{ s.t. } f \preceq f'' \text{ and } f'' \preceq f'$$

For each function f, we define two sets of rules to compute:

- the set of all its "parents": 3 rules
 - the set of all its "children": 3 rules

(Cury, Monteiro, Chaouiya, in preparation)

Number of states where f is true

Given any two functions f, f' s.t. f' is a "parent" of f:

• there is never more than 2 states of difference

(Cury, Monteiro, Chaouiya, in preparation)

Outline

Biological motivatior

Structure of Boolean functions

Stochasticity & robustness in regulatory networks

PBN - Probabilistic Boolean networks

PBN - Probabilistic Boolean networks

• Model the choice between alternate biological functions for activation of gene/protein

(Shmulevich et al., Bioinformatics 2002)

SIN - Stochasticity in nodes

SIN - Stochasticity in nodes

- Nodes are flipped from 0 to 1 (or vice-versa) with some predefined probability
- Regardless of the susceptibility to stochasticity of the underlying function

(Ribeiro and Kauffman, J. Theor. Biol. 2007)

(Davidich and Bornholdt, PLoS ONE 2008)

(Álvarez-Buylla et al., PLoS ONE 2008)

SIF - Stochasticity in functions

SIF - Stochasticity in functions

(Garg et al., Bioinformatics 2009)

- associates a probability of failure with different functions
- models stochasticity in these functions depending upon the expression of the input nodes

$$BUFF: f^{B}(x_{a}) = [(x_{c} \leftrightarrow \mathbf{0}) \land \Delta] \lor [(x_{c} \leftrightarrow x_{a}) \land \neg \Delta]$$

$$NOT: f^{N}(x_{a}) = [(x_{c} \leftrightarrow \mathbf{1}) \land \Delta] \lor [(x_{c} \leftrightarrow \neg x_{a}) \land \neg \Delta]$$

$$OR: f^{O}(x_{1}, ..., x_{p}) = (x_{c} \leftrightarrow \bigvee_{i=1}^{p} x_{i})$$

$$AND: f^{A}(x_{1}, ..., x_{p}) = [(x_{c} \leftrightarrow \mathbf{0}) \land \Delta] \lor$$

$$\left[(x_{c} \leftrightarrow \bigwedge_{i=1}^{p} x_{i}) \land \neg \Delta \right]$$

$$IAND: f^{IA}(x_{1}, ..., x_{p}) = \left[\{x_{c} \leftrightarrow \bigwedge_{j=1}^{p^{n}} x_{j}\} \land \Delta \right] \lor$$

$$\left[\{x_{c} \leftrightarrow (\bigwedge_{i=1}^{p^{n}} \neg x_{i}^{in} \land \bigwedge_{j=1}^{p^{n}} x_{j}^{a})\} \land \neg \Delta \right]$$

SIF - Stochasticity in functions

SIF - Stochasticity in functions

(Garg et al., Bioinformatics 2009)

- associates a probability of failure with different functions
- models stochasticity in these functions depending upon the expression of the input nodes

 Table 1. Truth tables representing the transfer function of different Boolean logic gates. A and B are the input genes, C represents the output gene expression in the absence of stochasticity and \tilde{C} represents the output gene expression in the presence of stochasticity under the SIF model.

Model application

T-helper differentiation network

The Th network. The regulatory network that controls the differentiation process of T helper cells. Positive regulatory interactions are in green and negative interactions in red.

(Mendoza and Xenarios, Theor. Biol. Med. Model. 2006)

• From percursor Th0 cells to Th1 or Th2 effector cells upon the presence of cytokines IFN γ or IL4, respectively

Model application

T-helper differentiation network

Cell type signatures (stable states):

	GATA3	$IFN\gamma$	IL4	IL4R	JAK1	SOCS1	STAT1	Tbet	IFNb
Th0	0	0	0	0	0	0	0	0	0
Th1	0	1	0	0	0	1	0	1	0
Th2	1	0	1	1	0	0	0	0	0

Th0 cells in response to an IFN γ stimuli

- differentiate to Th1
- cannot differentiate to Th2

(Murphy and Reiner, Nat. Rev. Immunol. 2002)

Stochasticity in gene regulatory networks

T-helper differentiation network

Fig. 4. Simulation results showing the effect of noise on T-helper cell differentiation process with an external stimulus of IFN₂. Each small circle is representative of a T-helper cell and each cell is modeled to behave independent of the neighboring cells. Red cells represent the naïve undifferentiated ThO cells, green cells represent Th1 cell state and blue cells represent Th2 cell state. Ratio of number of red (green or blue) cells to total number of cells in a panel is representative of the probability of differentiating into Th0 (Th1 or Th2) cell state. (a) Cell culture maintained in Th0 state. (b) In absence of any stochasticity all Th0 cells differentiate to Th1 ned 18 tate on receiving IFN₂ (c) Th0 cells differentiate Th1 and Th2 under the SIN model of stochasticity. Few cells revert to Th0 state as seen by the few patches of red color. (d) SIF model of stochasticity shows that Th0 cells differentiate into Th1 cells while some cells cannot differentiate on receiving IFN₂ and revert to Th0 cell state. None of the cells differentiate into Th2 cell state. The probability of failure (i.e. ε) is 0.5 for all the nodes (functions) in the SIN model (SIF model).

(Garg et al., Bioinformatics 2009)

Deterministic setting - fGATA3

- · Synchronous simulation
- All monotone non-degenerate functions for f_{GATA3}
- Reference f_{GATA3} =
 (!Tbet & GATA3) | (!Tbet & STAT6)

Legend:

```
1 - Thet
```

2 - GATA3

3 - STAT6

Th1 - green nodes

riii - green noue

Th2 - blue nodes

Solid node - non-degenerate function

Deterministic setting - fGATA3

- Synchronous simulation
- All monotone non-degenerate functions for f_{GATA3}
- Reference f_{GATA3} =
 (!Tbet & GATA3) | (!Tbet & STAT6)

Legend:

1 - !Tbet

2 - GATA3

3 - STAT6

Th1 - green nodes

Th2 - blue nodes

Solid node - non-degenerate function

Deterministic setting - fGATA3

- Synchronous simulation
- All monotone functions for f_{GATA3}
- Reference f_{GATA3} =
 (!Tbet & GATA3) | (!Tbet & STAT6)

Legend:

1 - !Tbet

2 - GATA3

3 - STAT6

Th1 - green nodes

Th2 - blue nodes

Solid node - non-degenerate function

Deterministic setting - fIL4

- Synchronous simulation
- All monotone non-degenerate functions for f_{IL4}
- Reference f_{IL4} = GATA3 & !STAT1

Legend:

1 - GATA3

2 - !STAT1

Th1 - green nodes

Th2 - blue nodes

Solid node - non-degenerate function

Dashed node - degenerate function

Deterministic setting - fIL4

- Synchronous simulation
- All monotone functions for f_{IL4}
- Reference f_{IL4} = GATA3 & !STAT1

Legend:

1 - GATA3

2 - !STAT1

Th1 - green nodes

Th2 - blue nodes

Solid node - non-degenerate function

Deterministic setting - f_{Tbet}

- Synchronous simulation
- All monotone non-degenerate functions for f_{Tbet}
- Reference $f_{Tbet} =$ (!GATA3 & STAT1) | (!GATA3 & Tbet)

Legend:

1 - !GATA3

2 - STAT1

3 - Thet

Th0 - red nodes

Th1 - green nodes

Solid node - non-degenerate function

Deterministic setting - f_{Tbet}

- Synchronous simulation
- All monotone functions for f_{Tbet}
- Reference f_{Tbet} =
 (!GATA3 & STAT1) | (!GATA3 & Tbet)

Legend:

1 - !GATA3

2 - STAT1

3 - Thet.

Th0 - red nodes

Th1 - green nodes

Solid node - non-degenerate function

Deterministic setting

Q: How to choose the "correct" function(s)?

Deterministic setting

Given a reference function could we suggest alternative functions which are:

Deterministic setting

Given a reference function could we suggest alternative functions which are:

at maximum distance d

Deterministic setting

Given a reference function could we suggest alternative functions which are:

- at maximum distance d
- more general/specific functions

Deterministic setting

Q: How to choose the "correct" function(s)?

Given a reference function could we suggest alternative functions which are:

- at maximum distance d
- more general/specific functions
- add/remove degenerate functions
- . .

Non-deterministic setting - fGATA3

At each time step, choose between:

• All (20) monotone functions for f_{GATA3} with equal probability (of 0.05)

Non-deterministic setting - fGATA3

At each time step, choose between:

 All (20) monotone functions for f_{gata3} with equal probability (of 0.05)

900 simulations:

Th0 - 41

Th1 - 305

Th2 - 554

Non-deterministic setting - fGATA3

At each time step, choose between:

- 0.8 reference f_{GATA3} = (!Tbet & GATA3) | (!Tbet & STAT6)
- 0.2 its neighbours

900 simulations:

Th0 - 2

Th1 - 744

Th2 - 154

Non-deterministic setting - fGATA3

At each time step, choose between:

- 0.8 reference f_{GATA3} = (!Tbet & GATA3) | (!Tbet & STAT6)
- 0.2 its more specific neighbours

900 simulations:

Th0 - 0

Th1 - 900

Th2 - 0

Food for thought...

Questions for the working group

Food for thought...

Questions for the working group

Using the Boolean functions PO set:

- is the reference function robust to changes?
- should we define instead classes of models (sets of functions)?

Food for thought...

Questions for the working group

Using the Boolean functions PO set:

- is the reference function robust to changes?
- should we define instead classes of models (sets of functions)?

Building Boolean models from regulatory maps, upon insuficient knowledge:

- should a default function be atributed?
 if so, a more specific or more general one (lower or higher in the PO set)?
 - e.g. at least one activator and no inhibitor
 - e.g. canalyzing functions
 - ...
- or should we consider (algorithmically support?) incomplete models?

Thank you!

Questions?!

Acknowledgements: Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

José Cury

Claudine Chaouiya

