Conceptual and computational framework for logical modelling of biological networks deregulated in diseases

Arnau Montagud Computational Systems Biology of Cancer U900, Institut Curie

Logical modelling pipeline

https://github.com/sysbio-curie/Logical modelling pipeline

How to extract as much information as possible from a model?

A model is built to answer a particular question... but how much more can we get out of it?

3 types of approaches:

- analysis on the structure of the network
- analysis of the mathematical model
- link data with the network/model

Pipeline

Example on a Boolean model

RESEARCH ARTICLE

Discovery of Drug Synergies in Gastric Cancer Cells Predicted by Logical Modeling

Åsmund Flobak¹*, Anaïs Baudot², Elisabeth Remy², Liv Thommesen^{1,3}, Denis Thieffry^{4,5,6}, Martin Kuiper⁷, Astrid Lægreid¹*

Cell fate decision network in the AGS gastric cancer cell line, with 75 signalling and regulatory components

Reduced model has 10 nodes

Analyses by Pauline Traynard

What insights can we get from the mathematical model

Types of questions to be answered

- what are the solutions of the model that can be interpreted biologically?
- what are the important nodes of the network?
- how robust/sensitive is the model?
- what nodes could be altered (i.e. by mutations of genetic alterations) to account for a clinical output (e.g. stage of the tumor or metastasis) in a deregulation of a normal situation (e.g. tumorigenesis)?
- can we predict genetic interactions (epistasis, synthetic lethality) from the model?
- can we simplify/reduce the model to highlight the most important processes?

Asymptotic solutions

Stable state solutions, where the system can no longer evolve

Probabilities of reaching a state from an initial condition

- continuous time Markov process / Gillespie algorithm on the transition state space
- a rate of change associated to each transition (separate rate up and rate down)

⇒ To each Boolean state, a probability is associated

Each stable state corresponds to a biological situation/context

Asymptotic solutions

Stable state solutions, where the system can no longer evolve

Probabilities of reaching a state from an initial condition

Each stable state corresponds to a biological situation/context

Phenotypes

Prosurvival_b2-Prosurvival_b1-Prosurvival_b3

Prosurvival_b1

Antisurvival_b1

Antisurvival_b3-Prosurvival_b1

→ Transient effects

→ Mutants can be studied semi-quantitative

http://www.ginsim.org

Can we classify the solutions of the Boolean model?

Mutants in MaBoSS

betacatenin=1 and GSK3=0: Prosurvival stable state is selected

Mutants in MaBoSS

Cohen et al. (2015) PLoS Comp Biol

Chanrion et al. (2014) Nat Comm

The model confirms the appearance of metastasis in the Notch++/p53-- double mutant

We can predict genetic interactions

Calzone et al. (2015) Integr. Biol.

$$\varepsilon_{\phi}(A,B) = f_{\phi}^{AB} - \psi(f_{\phi}^{A}, f_{\phi}^{B})$$

- 1. we generate all single and double mutants
- 2. we simulate MaBoSS to associate to each mutant a probability of phenotype (e.g. Metastasis)
- 3. we associate to double mutants, a type of genetic interactions depending on the computed epistasis value

masking interaction: the double mutant has no advantage over one of the single mutants synergistic interaction: the double mutant is increasing or decreasing the probability of single mutants

$$\begin{array}{ll} \psi^{ADD}(x,y) = x + y & (additive) \\ \psi^{LOG}(x,y) = log_2((2^x - 1)(2^y - 1) + 1) & (log) \\ \psi^{MLT}(x,y) = xy & (multiplicative) \\ \psi^{MIN}(x,y) = \min(x,y) & (min) \end{array}$$

Predicting genetic interactions

PCA on MaBoSS output

- WT at the centre
- Selected phenotypes as variables
- Mutants projected on these phenotypes
- Only looking at
 - Prosurvival
 - Antisurvival

Predicting genetic interactions

- We performed a manual merging of single phenotypes into a phenotype Growth that corresponds to the difference of
 - "Prosurvival -- Antisurvival"
 - normalized between 0 and 1

- PCA values on MaBoSS output
 - WT-normalized
 - Growth pseudo-phenotype
 - Mutants projected on this phenotype

Robustness analysis of genetic interactions with respect to the phenotype probability

- Ratio mutant / WT on Growth
 - Prosurvival Antisurvival
 - Mutants and WT have different probabilities for this phenotype
 - WT bin in red

Robustness analysis of genetic interactions with respect to the phenotype probability

- Ratio mutant / WT on Growth
 - Prosurvival Antisurvival
 - Mutants and WT have different probabilities for this phenotype
 - WT bin in red

Robustness of the model

- Can we confirm that the proposed model is robust with respect to small changes?
- > Is there one model or a family of models that could be equivalent?
- Can we identify the "weak spots" of the model?

Three tests were performed:

- One operator in all rules was changed
- Two operators in one rule were changed
- One operator in two rules was changed

Question: how do these changes affect the probability to reach a phenotype?

Robustness analysis of logical gates with respect to the phenotype probability

- Identify nodes whose logical rules have a drastic effects on the model properties
- The rules of some genes need to be carefully studied: AKT and PI3K in particular

Pipeline

Logical modelling pipeline

Acknowledgments

Laurence Calzone Pauline Traynard

Eric Bonnet
Andrei Zinovyev
Loredana Martignetti
Gautier Stoll

LemonTree Robustness, epistasis

ROMA MaBoSS https://github.com/sysbio-curie/ Logical modelling pipeline

ArnauMontagud Update Tutorial.md		Latest commit 885c2
doc	Update Tutorial.md	
iib lib	uploading	
models	uploading	
scripts	Update histogram.R	
LICENSE	Initial commit	
README.md	Update README.md	
⊞ README.md		
Logical modelling pipeline		

Repository of the pipeline of computational methods for logical modelling of biological networks that are deregulated in diseases.

Full tutorial can be followed on the dedicated Tutorial webpage

Data to Model

- Types of questions to be answered
 - can we confirm that the genes included in the model are reasonable with respect to datasets?
 - can the model stratify patients based on the stable state solutions?
 - More aggressive tumours are associated to proliferative stable states
 - can we identify over/under activated pathways when comparing two conditions?

Data to Model

• Tools

- LemonTree (inference of modules of co-regulated genes and their regulatory programs from data)
- R (to compute distance from data to model)
- ROMA (module activity)

Interpreting data with the network

- Tool: ROMA (Representation Of Module Activity)
- Command line tool

The main idea behind ROMA is:

- to define a metagene that captures the largest amount of variance
- this variance is interpreted as a result of the variability in the pathway biological activity
- to explore the activity of sets of genes (modules) rather than individual genes across samples explained by the genes in the module

A module is a list of target genes of a TF, list of genes composing a process, etc.

Example of response to cetuximab (EGFR inhibitor) for 8 colon cancer patients

- 4 responders and 4 non responders
- GSE56386 (no paper associated to the data)

Data: Transcriptomics data of colon tumour biopsies

- Colon tumours on TCGA
- 17 metastatic and 88 nonmetastatic patients

Gene level

Mean value expression of genes mapped on the network:

17 metastatic and 88 non-metastatic patients

- ⇒ The figure is very similar for both metastastic and non-metastatic patients
- ⇒ No obvious differences at the transcriptomics level for Notch and p53

ROMA

Martignetti et al, Front Genet. 2016 https://github.com/sysbio-curie/Roma

- ROMA: Representation Of Module Activity
- The main idea behind ROMA is:
 - to define a metagene that captures the largest amount of variance
 - to explore the activity of sets of genes (modules) rather than individual genes across samples explained by the genes in the module

ROMA

Martignetti et al, Front Genet. 2016 https://github.com/sysbio-curie/Roma

- Gene set: set of genes with a functional relationship
 - ACSN signalling pathways
 - KEGG metabolic pathways
 - Can have weights and sign
- The data is not analysed per gene but per gene-set
- In this case, gene-set is a module and its genes

- KEGG_CITRATE_CYCLE_TCA_CYCLE: IDH3B, DLST, PCK2, CS, PDHB, PCK1, PDHA1, LOC642502, PDHA2, LOC283398, FH, SDHD, OGDH, SDHB, IDH3A, SDHC, IDH2, IDH1, ACO1, ACLY, MDH2, DLD, MDH1, DLAT, OGDHL, PC, SDHA, SUCLG1, SUCLA2, SUCLG2, IDH3G, ACO2
- G3-Kinases: CSNK2A1[18.09], CDK1[11.76], PRKDC[9.95], GSK3B[9.50], AURKA[6.33], ADRBK1[4.52], HIPK2[4.52], MAPK3[4.52], MAPK1[3.61], AKT1[2.71], CLK1[2.71], ATM[2.26], TGFBR2[2.26], TTK[2.26], CDK4[1.8], CSNK2A2[1.8], PRKCA[1.8], ATR[1.35], CDK2[1.35], CDK5[1.35], DMPK[1.35], EIF2AK2[1.35], GSK3A[1.35]

Colon tumour data

Modules are the result of the model reduction

Activity of each module = sum of the expression of genes

What about EMT?

- EMT transient
- only a small proportion of cells go through EMT
- ⇒ Search for time series of EMT induction