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Logical modelling pipeline

https://github.com/sysbio-curie/Logical modelling pipeline

Branch: master v

aArnauMontagud uploading models exported from GINsim and Flobak's

i doc Update Tutorial.md

i lib added MaBoSS version 2 to pipeline

i models uploading models exported from GINsim and Flobak's
B scripts modified script files to be more general

[E) LICENSE Initial commit

E] README.md Update README.md

README.md

Logical modelling pipeline

Find file Clone or download ~

Latest commit 8ca4315 4 days ago

2 months ago
16 days ago
4 days ago

4 days ago

a year ago

a year ago

Repository of the pipeline of computational methods for logical modelling of biological networks that are deregulated in

diseases.

Full tutorial can be followed on the dedicated Tutorial webpage
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How to extract as much information
as possible from a model?

A model is built to answer a particular question... but how
much more can we get out of it?

3 types of approaches:

- analysis on the structure of the network
- analysis of the mathematical model

- link data with the network/model
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Example on a Boolean model

COMPUTATIONAL
BIOLOGY

Discovery of Drug Synergies in Gastric Cancer
Cells Predicted by Logical Modeling

Asmund Flobak'*, Anais Baudot?, Elisabeth Remy?, Liv Thommesen'3,

Denis Thieffry*>®, Martin Kuiper”, Astrid Laegreid’*
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Cell fate decision network in the AGS
gastric cancer cell line, with 75
signalling and regulatory components

Reduced model has 10 nodes

Analyses by Pauline Traynard



What insights can we get from the
mathematical model

Types of questions to be answered

— what are the solutions of the model that can be interpreted
biologically?

— what are the important nodes of the network?
— how robust/sensitive is the model?

— what nodes could be altered (i.e. by mutations of genetic
alterations) to account for a clinical output (e.g. stage of the
tumor or metastasis) in a deregulation of a normal situation
(e.g. tumorigenesis)?

— can we predict genetic interactions (epistasis, synthetic
lethality) from the model?

— can we simplify/reduce the model to highlight the most
important processes?
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Asymptotic solutions

Stable state solutions, where the Probabilities of reaching a state from
system can no longer evolve an initial condition lﬁﬂ q N
(::_lei/n‘)r,_ BAN.
= 5 g g Method:
o £ % %0 g 5 3 h g e * continuous time Markov process / Gillespie

algorithm on the transition state space
a rate of change associated to each transition
(separate rate up and rate down)

E

—> To each Boolean state, a probability is associated
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Asymptotic solutions

Stable state solutions, where the Probabilities of reaching a state from
system can no longer evolve an initial condition /ﬁﬂq N
(GINsim
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Can we classify the solutions of the

Boolean model?
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Mutants in MaBoSS

Wild type

. Antisurvival_b1 . Antisurvival_b2-Antisurvival_b1-Antisurvival_b3
. Prosurvival_b1 . Prosurvival_b2-Prosurvival_b1-Prosurvival_b3

Phenotype probablity

Mutant
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Mutants in MaBoSS

Model prediction Mouse experiment
A. Wild type B. p53 LoF NICD++/ P53—

a
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Time after tamoxifen induction (months)

DAPI ECAD Vimentin

e

C. NICD GoF D. p53 LoF NICD GoF

Invasion
18%
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36%
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Cohen et al. (2015) PLoS Comp Biol Chanrion et al. (2014) Nat Comm

The model confirms the appearance of metastasis in the Notch++/p53-- double mutant



We can predict genetic interactions

= SYNErgistic interactions
= Mmasking interactions

Calzone et al. (2015) Integr. Biol.

€s(A.B) = f" —w(fy.15)
O ez 111y !nserm
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1. we generate all single and double mutants

2. we simulate MaBoSS to associate to each
mutant a probability of phenotype (e.g.
Metastasis)

3. we associate to double mutants, a type of
genetic interactions depending on the
computed epistasis value

masking interaction: the double mutant has no
advantage over one of the single mutants
synergistic interaction: the double mutant is
increasing or decreasing the probability of
single mutants

yAPP (x y) = x+y (additive)
yrOY(x,y) = logr((2° = 1)(2 = 1) +1) (log)
yMET (x y) = xy (multiplicative)
y W (x.y) = min(x, y) (min)
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PC2 WTcentered

Predicting genetic interactions
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PC1_WTcentered

e PCA on MaBoSS
output
— WT at the centre

— Selected phenotypes as
variables

— Mutants projected on
these phenotypes
e Only looking at
— Prosurvival
— Antisurvival
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Predicting genetic interactions

e We performed a manual merging of e PCA values on MaBoSS output
single phenotypes into a phenotype

Growth that corresponds to the
difference of

— WT-normalized
— Growth pseudo-phenotype

— Mutants projected on this
“Prosurvival -- Antisurvival” phenotype

— normalized between 0 and 1

Mutants
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Robustness analysis of genetic interactions
with respect to the phenotype probability

e Ratio mutant / WT on

Growth
— Prosurvival - Antisurvival

l‘f-?: ‘EW different probabilities
| y ~ for this phenotype
\ N Apoptosis 4 ’ Apoptosis

Wild type Mutant 1

— Mutants and WT have
— WT binin red

Mutant 3

Mutant 2
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Robustness analysis of genetic interactions
with respect to the phenotype probability

WT .
l e Ratio mutant / WT on
70% - Growth
— Prosurvival - Antisurvival
60% -
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Growth value for double mutants
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Robustness of the model

» Can we confirm that the proposed model is robust with respect to small
changes?

» |s there one model or a family of models that could be equivalent?
» Can we identify the “weak spots” of the model?

Three tests were performed:

* One operator in all rules was changed

e Two operators in one rule were changed
* One operator in two rules was changed

Question: how do these changes affect the probability to reach a phenotype?
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Robustness analysis of logical gates with

respect to the phenotype probability

e |dentify nodes whose logical rules have a drastic effects on the model
properties
e The rules of some genes need to be carefully studied: AKT and PI3K in
particular
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Logical modelling pipeline
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https://github.com/sysbio-curie/
Logical modelling pipeline

LemonTree
Robustness, epistasis
ROMA
g ArnauMontagud Update Tutorial.md Latest commit 885c2:
MaBoSS
lib
models
scripts
E) LICENSE
[E) README.md

README.md

Logical modelling pipeline

Repository of the pipeline of computational methods for logical modelling of biological networks that are deregulated in
diseases.

Full tutorial can be followed on the dedicateddTutorial webpage




Data to Model

e Types of questions to be answered

— can we confirm that the genes included in the model are reasonable
with respect to datasets?
— can the model stratify patients based on the stable state solutions?
e More aggressive tumours are associated to proliferative stable states

— can we identify over/under activated pathways when comparing
two conditions?
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institut

Data to Model

e Tools

— LemonTree (inference of modules of co-regulated genes and their
regulatory programs from data)

— R (to compute distance from data to model)
— ROMA (module activity)
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Interpreting data with the network

e Tool: ROMA (Representation Of Module Activity)
e Command line tool

The main idea behind ROMA is:
— to define a metagene that captures the largest amount of variance
— this variance is interpreted as a result of the variability in the pathway biological
activity
— to explore the activity of sets of genes (modules) rather than individual genes
across samples explained by the genes in the module

A module is a list of target genes of a TF, list of genes composing a process, etc.

Example of response to cetuximab (EGFR inhibitor) for 8 colon cancer patients

— 4 responders and 4 non responders
— GSE56386 (no paper associated to the data)
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Data: Transcriptomics data of colon tumour
biopsies

e Colon tumours on TCGA

) NATIONAL CANCER INSTITUTE —
GDC Data Portal —

. = TCGA-COAD & Download Manifest | < Download Clinical
e 17 metastatic and 88 non- R (]

1 1 Summa
metastatic patients Yy
Project ID TCGA-COAD
NATIONAL CANCER INSTITUTE Project Name Colon Adenocarcinoma
m GDC Data Portal = Disease Type Colon Adenccarcinoma
Primary Site Colorectal
Harmonized Cancer Datasets ik b
Genomic Data Commons Data Portal 5
461 &
Get Started by Exploring:
FILES
IEl Projects
! 11,824
. Data ANNOTATIONS @:
115
Perform Advanced Search Queries, stch as:
Cases of kidney cancer diagnosed at the age of 20 and below 1,519 Files ] )
Case and File Counts by Experimental Strategy ¢
CNV data of female brain cancer cases 1,788 Files Experimental Strategy Cases Files
) e _ _ . B Genotyping Array 458 1.944
Gene expression quantification data in TCGA-GBM project 522 Files :
Methvlation Arrayv - 458 556
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Gene level

Mean value expression of genes mapped on the network:
17 metastatic and 88 non-metastatic patients
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—> The figure is very similar for both metastastic and non-metastatic patients
— No obvious differences at the transcriptomics level for Notch and p53



... RS ' ‘ I = O I\/I A Martignetti et al, Front Genet. 2016

https://github.com/sysbio-curie/Roma
e The main idea behind ROMA is:

e ROMA: Representation Of — to define a metagene tha’F captures
- the largest amount of variance
Module Activity

— to explore the activity of sets of
genes (modules) rather than
individual genes across samples
explained by the genes in the
module

Overdispered gene set Non overdispered gene set

MAPK\

E2F3\_TARGETS\

PC1

D
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[Figure from A. Zinovyev] RESEAFR CH




e Gene set: set of genes with a
functional relationship
— ACSN signalling pathways
— KEGG metabolic pathways
— Can have weights and sign

e The data is not analysed per
gene but per gene-set

e |n this case, gene-set is a
module and its genes
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ROMA

Martignetti et al, Front Genet. 2016
https://github.com/sysbio-curie/Roma

KEGG_CITRATE_CYCLE_TCA_CYCLE: IDH3B,
DLST, PCK2, CS, PDHB, PCK1, PDHA1,
LOC642502, PDHA2, LOC283398, FH, SDHD,
OGDH, SDHB, IDH3A, SDHC, IDH2, IDH1,
ACO1, ACLY, MDH2, DLD, MDH1, DLAT,
OGDHL, PC, SDHA, SUCLG1, SUCLA2, SUCLG2,
IDH3G, ACO2

G3-Kinases: CSNK2A1[18.09], CDK1[11.76],
PRKDC[9.95], GSK3B[9.50], AURKA[6.33],
ADRBK1[4.52], HIPK2[4.52], MAPK3[4.52],
MAPK1[3.61], AKT1[2.71], CLK1[2.71],
ATM[2.26], TGFBR2[2.26], TTK[2.26],
CDKA4[1.8], CSNK2A2[1.8], PRKCA[1.8],
ATR[1.35], CDK2[1.35], CDK5[1.35],
DMPK[1.35], EIF2AK2[1.35], GSK3A[1.35]
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Module level

dow

What about EMT?

- EMT transient

- only a small proportion of cells go through EMT
—> Search for time series of EMT induction

Colon tumour data

Modules are the result
of the model reduction

Activity of each module
= sum of the
expression of genes



