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General motivation: study large biological networks
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(Saez-Rodriguez et al., PLoS Comput. Biol. 2007)

Signalling pathways,
regulatory modules

Lack of quantitative data

ON/OFF mechanisms,
thresholds

⇒ Discrete modelling
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Logical formalism

Discrete modelling: logical formalism (Thomas and d’Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) R= (G, K)

G = {gi}i=0,...,n is a set of regulatory components

Max : G → N∗ associates a maximum level Mi to each component gi

S =
∏

gi∈G
Di : is the state space, where Di = {0, . . . ,Max(gi )}

∀gi : Ki : S → Di is the regulatory function specifying the behaviour of gi

State transition graph (STG)

The dynamic behaviour of an LRG, is represented by an STG where:

nodes are states in S
and arcs (v ,w) ∈ S2 denote transitions between states

3



Logical formalism

Discrete modelling: logical formalism (Thomas and d’Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) R= (G, K)

G = {gi}i=0,...,n is a set of regulatory components

Max : G → N∗ associates a maximum level Mi to each component gi

S =
∏

gi∈G
Di : is the state space, where Di = {0, . . . ,Max(gi )}

∀gi : Ki : S → Di is the regulatory function specifying the behaviour of gi

State transition graph (STG)

The dynamic behaviour of an LRG, is represented by an STG where:

nodes are states in S
and arcs (v ,w) ∈ S2 denote transitions between states

3



Logical formalism

Discrete modelling: logical formalism (Thomas and d’Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) R= (G, K)

G = {gi}i=0,...,n is a set of regulatory components

Max : G → N∗ associates a maximum level Mi to each component gi

S =
∏

gi∈G
Di : is the state space, where Di = {0, . . . ,Max(gi )}

∀gi : Ki : S → Di is the regulatory function specifying the behaviour of gi

State transition graph (STG)

The dynamic behaviour of an LRG, is represented by an STG where:

nodes are states in S
and arcs (v ,w) ∈ S2 denote transitions between states

3



Logical formalism

Toy example (Boolean)

g0

g1g2

g3 g4

g5

K0(v) = 1 if v1 = 1 ∨ v2 = 1
K1(v) = 1 if v0 = 1 ∨ v1 = 1 ∨ v2 = 1
K2(v) = 1 if v3 = 1
K3(v) = input fixed or unconstrained
K4(v) = 1 if v0 = 1 ∨ v5 = 1
K5(v) = 1 if v1 = 1

Interesting properties

What are the attractors of the system? (stable states, complex attractors)

Are these attractors reachable from initial conditions?

Are these attractors maintained under input variations?

...
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Formal verification and model checking

1st objective: automate model verification

Confront model predictions with biological observations

Approach: use of formal verification techniques

Formal verification based on temporal logic and model checking provides a
powerful technology to query models of interaction networks.
(Chabrier-Rivier et al., Theor Comput Sci 2004) (Batt et al., Bioinformatics 2005) (Monteiro et al., Bioinformatics 2008)

Model checking

Fully automated exhaustive exploration of the state space of the model.

Transform models into a Kripke structure K = (S ,AP, L,TR), where:

S are the states (Kripke, Acta Phil. Fennica 1963)

TR ⊆ SxS the transition relation between states
L : S → 2AP a state labeling function, with a set of atomic propositions true
in that state (values of variables, signs of derivatives, ...)

Specify dynamical properties as statements in temporal logic that are
interpreted on state transition graph.

(Emerson and Clarke, ICALP 1980) (Queille and Sifakis, Intl. Symp. Program. 1982)
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Logical formalism

2nd objective: ease dynamical analysis

Deal with the combinatorial explosion!
→ define methods to safely reduce the state space

Toy model characteristics

g0

g1g2

g3 g4

g5

Type of components:

1 input component

1 pseudo-input component

2 core components

1 pseudo-output component

1 output component

Complete state transition graph has 26 = 64 states
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Reduction of output components

Reduction?

Remove components: reduce complexity, control the dynamical impact

Output reduction

No computation

No impact

Retrieve values g0

g1g2

g3 g4

g5

Extend to pseudo-outputs

No impact

Harder retrieval

⇒ Rewire the model:
pseudo-outputs
become outputs

g0

g1g2

g3 g4

g5
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Reduction of (pseudo-)outputs components

Implementation in GINsim

Lossless reduction of (pseudo-)outputs

Preservation of attractors and their reachability

Complete STG

011111

111111

011101

111101

000100

101110

001100

101100 011100

111100

111110

STG with output reduction
0001

0011

1011 0111

1111

Generation of the STG without (pseudo-)output components

Computation of all (pseudo-)output values on demand
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Reduction of (pseudo-)outputs components

Implementation in NuSMV export

Effective representation for logical models:

Symbolic model representation

Combine different updating policies

(Pseudo-)Outputs are:
Not part of the state description
→ reduction of the state-space
Defined as macros
→ computation of all (pseudo-)output values on demand

MODULE main

VAR

properVar1 : { 0, 1 };

...

properVari : { 0, 1 };

ASSIGN

next(properVar1) :=

case

logicalRule1 : 1;

...

TRUE : 0;

esac;

...

DEFINE

outputVar :=

case

logicalRule1 : 1;

...

logicalRulej : 2;

TRUE : 0;

esac;

...
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Reduction of inputs components

K0(v) = 1 if v1 = 1 ∨ v2 = 1
K1(v) = 1 if v0 = 1 ∨ v1 = 1 ∨ v2 = 1
K2(v) = 1 if v3 = 1
K3(v) = input fixed or unconstrained

Complete STG

0000 1000

11000100

0010 1010

11100110

0001 1001

11010101

0011 1011

11110111

STG with input reduction

000 100

110010

001 101

111011

0,
1

0,
1

0,
1

0,
1

0,
1

0,
1

0, 1

0, 1

1
0

1
0

0

1 0

1

0

0

1
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Reduction of inputs components

K0(v) = 1 if v1 = 1 ∨ v2 = 1
K1(v) = 1 if v0 = 1 ∨ v1 = 1 ∨ v2 = 1
K2(v) = 1 if v3 = 1
K3(v) = input fixed or unconstrained

Kripke transition system

IVAR

G3 : { 0, 1 };

VAR

G0 : { 0, 1 };

G1 : { 0, 1 };

G2 : { 0, 1 };

(Müller-Olm et al., SAS 1999)

STG with input reduction
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Reduction of inputs components: stable patterns

Types of stable states

Strong stable state

Weak stable state

Types of stable core ensembles

Strong stable core ensemble

Weak stable core ensemble
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K0(v) = 1 if v1 = 1 ∨ v2 = 1
K1(v) = 1 if v0 = 1 ∨ v1 = 1 ∨ v2 = 1
K2(v) = 1 if v3 = 1
K3(v) = input fixed or unconstrained

Question: What’s the impact of different switches of input conditions on the
reachability of the biological attractors? and the system’s behaviour?
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Pseudo-inputs components not subject to reduction

Reduction of pseudo-inputs can cause reachability problems!

0000 1000

11000100

0010 1010

11100110

0001 1001

11010101

0011 1011

11110111

Pseudo-
input

reduction
=⇒ 000 100

110010

001 101

111011

Lost transitions

000 6→ 010

000 6→ 100

001 6← 101
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Reduction of input/ouput components: implementation

NuSMV export

Approach: Use a Kripke Transition System, representing information both:

on states (core + pseudo-input components)

on transitions (input components)

Advantages:

Implicit representation of the model

Reduction of (pseudo-)outputs by defining them as macros

Projection of input components over transitions

In GINsim, input components remain (constant) part of state characterization
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Checking reachability properties with NuSMV

Considered temporal logics

Computation Tree Logic (CTL)
Verifying properties with all unconstrained inputs

Action Restricted CTL (AR-CTL) (Pecheur and Raimondi, MoChArt 2006)

Verifying properties with some (or all) fixed inputs

Example of reachability properties

With unconstrained inputs (CTL):

INIT s000;

EF(s110);
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With fixed inputs (AR-CTL):

INIT s000;
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TCR activation model

T-cell activation through TCR is a key part of the specific immune response
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(Saez-Rodriguez, PLoS Comp. Biol. 2007)

LRG with 91 components

3 inputs, 14 fixed-inputs
35 core components

28 pseudo-outputs, 14 outputs

STG before reductions

23 = 8 disconnected STGs
288 = 3 ×1026 states for each

Size: 2.5 ×1027 states

STG after reductions

1 single compacted STG!

Size: 235 = 3.4 ×1010 states
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TCR activation model: structure of the dynamics

Approach

Impose combinations of fixed inputs (AR-CTL), to test reachability properties:

From the initial state towards the attractors

Between all the attractors

Necessary input conditions to switch between attractors

tcrlig=1

cd4=1

cd4=1

cd4=* cd4=*

cd4=1

cd28=1

cd28=0

InitState

cd28=1

cd4=*

SCC101 SCC111SCC001SCC011

cd28=0

cd4=*cd4=1

tcrlig=1 tcrlig=1 tcrlig=1

tcrlig=0

SS0*0

tcrlig=0

tcrlig=0

tcrlig=0

SS1*0

cd28: creates a separation on the state space

tcrlig=0: system evolves towards a stable state

tcrlig=1: system evolves towards a complex attractor

cd4: augments the size of the complex attractor
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Segment-polarity model in Drosophila: 4 input variables

Inputs accounting for other neighbouring cells

(Sánchez et al, Intl J. Dev. Biol 2008)

20



Segment-polarity model in Drosophila: 4 input variables

Inputs accounting for other neighbouring cells

(Sánchez et al, Intl J. Dev. Biol 2008)

20



Segment-polarity model in Drosophila: 4 input variables

Stable patterns direct reachability: 4 fixed inputs
TT TC TN CT CC CE CN EC EE EW NT NC NN NW WE WN WW

TT
TC
TN
CT
CC
CE
CN
EC
EE
EW
NT
NC
NN
NW
WE
WN
WW
Legend: ∃ input combinations, ∃ one direct path connecting two states

@ input combinations, ∃ one direct path connecting two states
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Segment-polarity model in Drosophila: 4 input variables

Stable patterns direct reachability: 4 varying inputs
TT TC TN CT CC CE CN EC EE EW NT NC NN NW WE WN WW

TT
TC
TN
CT
CC
CE
CN
EC
EE
EW
NT
NC
NN
NW
WE
WN
WW
Legend: With varying inputs, ∃ one path connecting two states

With varying inputs, @ one path connecting two states

Reduction of the state space without loss of information

Identification of WE and EW patterns as strong stable states
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Conclusions

In GINsim

Input components have constant values

Lossless reduction of (pseudo-)output components
Preserve attractors and reachability, compute output values on demand

In the NuSMV export

Symbolic representation
Profit from NuSMV internal OMDD representation

State space reduction:
Outputs defined as macros
Projection of input components on transitions

Study of the structure of the system’s dynamics

Counterexample may contain information about necessary environmental
conditions to ensure specific reachability properties

Impact of input components on attractor switches:
Definition of strong/weak stable states
Definition of strong/weak stable core ensembles
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Prospects

Study of the structure of the system’s dynamics

Automated uncovering of necessary conditions for attractor reachability

Complex attractors

Efficient methods for complex attractor identification
(without performing simulation)

Complex attractor characterization in terms of strong/weak patterns
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