Model-checking logical models of large regulatory networks

Pedro T. Monteiro^{1,3} Aurélien Naldi² Claudine Chaouiya¹

¹Instituto Gulbenkian de Ciência - Oeiras, PT

²Center for Integrative Genomics, UNIL - Lausanne, CH

³INESC-ID - Lisbon, PT

3rd CoLoMoTo meeting @ Lausanne, CH April 18, 2014

UNIL | Université de Lausanne

1 Introduction

2 Reduction/NuSMV enconding

3 Application

4 Conclusions and Prospects

General motivation: study large biological networks

(Saez-Rodriguez et al., PLoS Comput. Biol. 2007)

- Signalling pathways, regulatory modules
- Lack of quantitative data
- ON/OFF mechanisms, thresholds
- \Rightarrow Discrete modelling

Discrete modelling: logical formalism (Thomas and d'Ari, Biological Feedback 1989)

Discrete modelling: logical formalism (Thomas and d'Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) $\mathcal{R} = (\mathcal{G}, K)$

- $\mathcal{G} = \{g_i\}_{i=0,...,n}$ is a set of regulatory components
- $Max : \mathcal{G} \to \mathbb{N}^*$ associates a maximum level M_i to each component g_i
- $S = \prod_{g_i \in \mathcal{G}} D_i$: is the state space, where $D_i = \{0, \dots, Max(g_i)\}$
- $\forall g_i : K_i : S \rightarrow D_i$ is the regulatory function specifying the behaviour of g_i

Discrete modelling: logical formalism (Thomas and d'Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) $\mathcal{R} = (\mathcal{G}, K)$

- $\mathcal{G} = \{g_i\}_{i=0,...,n}$ is a set of regulatory components
- $Max : \mathcal{G} \to \mathbb{N}^*$ associates a maximum level M_i to each component g_i
- $S = \prod_{g_i \in \mathcal{G}} D_i$: is the state space, where $D_i = \{0, \dots, Max(g_i)\}$
- $\forall g_i : K_i : S \rightarrow D_i$ is the regulatory function specifying the behaviour of g_i

State transition graph (STG)

The dynamic behaviour of an LRG, is represented by an STG where:

- \blacksquare nodes are states in ${\mathcal S}$
- and arcs $(v, w) \in S^2$ denote transitions between states

Toy example (Boolean)

- $K_5(v) = 1$ if $v_1 = 1$
 - $\mathsf{K}_0(\mathsf{v}) = 1 \qquad \textit{if } \mathsf{v}_1 = 1 \lor \mathsf{v}_2 = 1$ $K_1(v) = 1$ if $v_0 = 1 \lor v_1 = 1 \lor v_2 = 1$ $K_2(v) = 1$ if $v_3 = 1$ $K_3(v) = input$ fixed or unconstrained $K_4(v) = 1$ if $v_0 = 1 \lor v_5 = 1$

Toy example (Boolean)

$$egin{aligned} & {\cal K}_0(v) = 1 \ & {\cal K}_1(v) = 1 \ & {\cal K}_2(v) = 1 \ & {\cal K}_3(v) = inpu \ & {\cal K}_4(v) = 1 \ & {\cal K}_5(v) = 1 \end{aligned}$$

 $\begin{array}{l} \mbox{if } v_1 = 1 \lor v_2 = 1 \\ \mbox{if } v_0 = 1 \lor v_1 = 1 \lor v_2 = 1 \\ \mbox{if } v_3 = 1 \\ \mbox{if } v_3 = 1 \\ \mbox{if } v_0 = 1 \lor v_5 = 1 \\ \mbox{if } v_1 = 1 \end{array}$

Interesting properties

- What are the attractors of the system? (stable states, complex attractors)
- Are these attractors reachable from initial conditions?
- Are these attractors maintained under input variations?
- ...

 $1st\ objective:\ automate\ model\ verification$

Confront model predictions with biological observations

1st objective: automate model verification

Confront model predictions with biological observations

Approach: use of formal verification techniques

Formal verification based on temporal logic and model checking provides a powerful technology to query models of interaction networks.

(Chabrier-Rivier et al., Theor Comput Sci 2004) (Batt et al., Bioinformatics 2005)

(Monteiro et al., Bioinformatics 2008)

1st objective: automate model verification

Confront model predictions with biological observations

Approach: use of formal verification techniques

Formal verification based on temporal logic and model checking provides a powerful technology to query models of interaction networks.

(Chabrier-Rivier et al., Theor Comput Sci 2004)

(Batt et al., Bioinformatics 2005)

(Monteiro et al., Bioinformatics 2008)

Model checking

Fully automated exhaustive exploration of the state space of the model.

- Transform models into a Kripke structure K = (S, AP, L, TR), where:
 - S are the states

(Kripke, Acta Phil. Fennica 1963)

- $TR \subseteq S \times S$ the transition relation between states
- $L: \overline{S} \to 2^{AP}$ a state labeling function, with a set of atomic propositions true in that state (values of variables, signs of derivatives, ...)
- Specify dynamical properties as statements in temporal logic that are interpreted on state transition graph.

(Emerson and Clarke, ICALP 1980)

2nd objective: ease dynamical analysis

Deal with the combinatorial explosion! \rightarrow define methods to **safely reduce** the state space

2nd objective: ease dynamical analysis

Deal with the combinatorial explosion! \rightarrow define methods to **safely reduce** the state space

Complete state transition graph has $2^6 = 64$ states

1 Introduction

2 Reduction/NuSMV enconding

3 Application

4 Conclusions and Prospects

Reduction?

Remove components: reduce complexity, control the dynamical impact

Reduction?

Remove components: reduce complexity, control the dynamical impact

Reduction?

Remove components: reduce complexity, control the dynamical impact

$Output \ reduction$

- No computation
- No impact
- Retrieve values

Extend to pseudo-outputs

- No impact
- Harder retrieval
- ⇒ Rewire the model: pseudo-outputs become outputs

Reduction of (pseudo-)outputs components

Implementation in GINsim

- Lossless reduction of (pseudo-)outputs
- Preservation of attractors and their reachability

Reduction of (pseudo-)outputs components

Implementation in GINsim

- Lossless reduction of (pseudo-)outputs
- Preservation of attractors and their reachability

- Generation of the STG without (pseudo-)output components
- Computation of all (pseudo-)output values on demand

Reduction of (pseudo-)outputs components

Implementation in NuSMV export

Effective representation for logical models:

- Symbolic model representation
- Combine different updating policies
- (Pseudo-)Outputs are:
 - Not part of the state description
 - \rightarrow reduction of the state-space
 - Defined as macros
 - \rightarrow computation of all (pseudo-)output values on demand

```
MDDULE main
VAR
properVar1 : { 0, 1 };
...
properVar1 : { 0, 1 };
ASSION
next(properVar1) :=
case
logicalRule1 : 1;
...
TRUE : 0;
esac;
...
```

```
DEFINE
outputVar :=
case
logicalRule1 : 1;
...
logicalRulej : 2;
TRUE : 0;
esac;
...
```

Reduction of inputs components

$\mathcal{K}_0(v) = 1$	if $v_1=1 \lor v_2=1$
$\mathcal{K}_1(v) = 1$	if $v_0 = 1 \lor v_1 = 1 \lor v_2 = 1$
$\mathcal{K}_2(v) = 1$	if $v_3 = 1$
$\mathcal{K}_3(v) = input$	fixed or unconstrained

Reduction of inputs components

$\mathcal{K}_0(\mathbf{v}) = 1$	if $\textit{v}_1 = 1 \lor \textit{v}_2 = 1$
$\mathcal{K}_1(v) = 1$	if $v_0 = 1 \lor v_1 = 1 \lor v_2 = 1$
$\mathcal{K}_2(v) = 1$	if $v_3 = 1$
$\mathcal{K}_3(v) = input$	fixed or unconstrained

STG with input reduction

Reduction of inputs components

$\mathcal{K}_0(v) = 1$	if $v_1=1 \lor v_2=1$
$\mathcal{K}_1(v) = 1$	if $v_0 = 1 \lor v_1 = 1 \lor v_2 = 1$
$\mathcal{K}_2(v) = 1$	if $v_3 = 1$
$\mathcal{K}_3(v) = input$	fixed or unconstrained

Kripke transition system
IVAR G3 : { 0, 1 };
VAR G0 : { 0, 1 }; G1 : { 0, 1 }; G2 : { 0, 1 };
(Müller-Olm et al., SAS 1999)

STG with input reduction

Reduction of inputs components: stable patterns

$Types \ of \ stable \ states$

- Strong stable state
- Weak stable state

Types of stable core ensembles

- Strong stable core ensemble
- Weak stable core ensemble

$$egin{array}{lll} \mathcal{K}_0(\mathbf{v}) = 1 & ext{if} \ \mathcal{K}_1(\mathbf{v}) = 1 & ext{if} \ \mathcal{K}_2(\mathbf{v}) = 1 & ext{if} \ \mathcal{K}_3(\mathbf{v}) = ext{input} & ext{fi} \end{array}$$

 $\begin{array}{l} \textit{if } v_1 = 1 \lor v_2 = 1 \\ \textit{if } v_0 = 1 \lor v_1 = 1 \lor v_2 = 1 \\ \textit{if } v_3 = 1 \\ \textit{fixed or unconstrained} \end{array}$

Question: What's the impact of different switches of input conditions on the reachability of the biological attractors? and the system's behaviour?

Pseudo-inputs components not subject to reduction

Reduction of pseudo-inputs can cause reachability problems!

Pseudo-inputs components not subject to reduction

Reduction of pseudo-inputs can cause reachability problems!

Lost transitions

NuSMV export

Approach: Use a Kripke Transition System, representing information both:

- on states (core + pseudo-input components)
- on transitions (input components)

Advantages:

- Implicit representation of the model
- Reduction of (pseudo-)outputs by defining them as macros
- Projection of input components over transitions

In GINsim, input components remain (constant) part of state characterization

Considered temporal logics

- Computation Tree Logic (CTL)
 Verifying properties with all unconstrained inputs
- Action Restricted CTL (AR-CTL) (Pecheur and Raimondi, MoChArt 2006) Verifying properties with some (or all) fixed inputs

Considered temporal logics

- Computation Tree Logic (CTL)
 Verifying properties with all unconstrained inputs
- Action Restricted CTL (AR-CTL) (Pecheur and Raimondi, MoChArt 2006) Verifying properties with some (or all) fixed inputs

Example of reachability properties

With unconstrained inputs (CTL):

```
INIT s000;
EF(s110);
```

Considered temporal logics

- Computation Tree Logic (CTL)
 Verifying properties with all unconstrained inputs
- Action Restricted CTL (AR-CTL) (Pecheur and Raimondi, MoChArt 2006) Verifying properties with some (or all) fixed inputs

Example of reachability properties

With unconstrained inputs (CTL):

```
INIT s000;
EF(s110);
```


Considered temporal logics

- Computation Tree Logic (CTL)
 Verifying properties with all unconstrained inputs
- Action Restricted CTL (AR-CTL) (Pecheur and Raimondi, MoChArt 2006) Verifying properties with some (or all) fixed inputs

Example of reachability properties

With unconstrained inputs (CTL):

INIT s000; EF(s110);

INIT s000; EAF(g₃=1)(s110);

Considered temporal logics

- Computation Tree Logic (CTL)
 Verifying properties with all unconstrained inputs
- Action Restricted CTL (AR-CTL) (Pecheur and Raimondi, MoChArt 2006) Verifying properties with some (or all) fixed inputs

Example of reachability properties

With unconstrained inputs (CTL):

INIT s000; EF(s110);

With fixed inputs (AR-CTL):

INIT s000; EAF(g₃=1)(s110);

1 Introduction

2 Reduction/NuSMV enconding

3 Application

4 Conclusions and Prospects

TCR activation model

T-cell activation through TCR is a key part of the specific immune response

(Saez-Rodriguez, PLoS Comp. Biol. 2007)

LRG with 91 components

3 inputs, 14 fixed-inputs 35 core components

28 pseudo-outputs, 14 outputs

STG before reductions

 $2^3=8$ disconnected STGs $2^{88}=3\times 10^{26}$ states for each Size: 2.5×10^{27} states

STG after reductions

1 single compacted STG! Size: $2^{35} = 3.4 \times 10^{10}$ states

TCR activation model: structure of the dynamics

Approach

Impose combinations of fixed inputs (AR-CTL), to test reachability properties:

- From the initial state towards the attractors
- Between all the attractors

TCR activation model: structure of the dynamics

Approach

Impose combinations of fixed inputs (AR-CTL), to test reachability properties:

- From the initial state towards the attractors
- Between all the attractors

- cd28: creates a separation on the state space
- tcrlig=0: system evolves towards a stable state
- tcrlig=1: system evolves towards a complex attractor
- cd4: augments the size of the complex attractor

⁽Sánchez et al, Intl J. Dev. Biol 2008)

(Sánchez et al, Intl J. Dev. Biol 2008)

Externa	l inputs													
Wg	Hh	Wg	Fz	Dsh	Slp	Nkd	En	Hh	Ci	Ciact	Cirep	Pka	Ptc	Letter code
0	0	0	0	0	0	1	0	0	1	0	1	2	1	T (trivial)
0	1	0	0	0	0	1	0	0	1	1	0	0	0	C (CiCiact)
0	1	2	1	1	1	2	0	0	1	2	0	0	0	W (Wg)
1	0	0	1	1	0	0	1	1	0	0	0	0	0	E (En)
1	0	0	1	1	1	2	0	0	1	1	0	2	2	N (Nkd)
1	1	2	1	1	1	2	0	0	1	2	0	0	0	w
1	1	0	1	1	0	0	1	1	0	0	0	0	0	E

Stabl	Stable patterns direct reachability: 4 fixed inputs																
	TT	TC	ΤN	CT	CC	CE	CN	EC	EE	EW	NT	NC	NN	NW	WE	WN	WW
TT																	
TC																	
TN																	
СТ																	
CC																	
CE																	I
CN																	
EC																	
EE																	
EW																	
NT																	
NC																	
NN																	
NW																	
WE																	
WN	_																
WW																	
Legen	nd:			∃inp	out cor	nbinat	ions, E	one	direct	path co	onnecti	ng two	states	5			
				∄ inp	out cor	nbinat	ions, =	one o	direct	path co	onnecti	ng two	states	5			

Stabl	Stable patterns direct reachability: 4 varying inputs																
	TT	TC	ΤN	СТ	CC	CE	CN	EC	EE	EW	NT	NC	NN	NW	WE	WN	WW
TT																	
TC																	
ΤN																	
СТ																	
CC																	
CE																	
CN																	
EC																	
EE																	
EW																	
NT																	
NC																	
NN																	
NW																	
WE																	
WN	-																
				A.C.I			. 7										
Legen	nd:			With	ı varyı varyı	ng inpi ng inpi	uts,∃ uts,∄	one pa one pa	th cor th cor	nectin	g two s g two s	states states					

Stabl	Stable patterns direct reachability: 4 varying inputs																
	TT	TC	ΤN	CT	CC	CE	CN	EC	EE	EW	NT	NC	NN	NW	WE	WN	WW
TT																	
TC																	
TN																	
CT																	
CC																	
CE																	
CN																	
EC																	
EE																	
EW																	
NT																	
NC																	
NN																	
NW																	
WE																	
WN																	
WW																	
Legen	ıd:			With	ı varyi	ng inpi	uts,∃	one pa	th cor	nectin	g two s	states					
				With	ı varyi	ng inpi	uts,∄	one pa	th cor	nectin	g two s	states					

- Reduction of the state space without loss of information
- Identification of WE and EW patterns as strong stable states

1 Introduction

2 Reduction/NuSMV enconding

3 Application

4 Conclusions and Prospects

Conclusions

$In \ GINsim$

- Input components have constant values
- Lossless reduction of (pseudo-)output components
 Preserve attractors and reachability, compute output values on demand

Conclusions

In GINsim

- Input components have constant values
- Lossless reduction of (pseudo-)output components
 Preserve attractors and reachability, compute output values on demand

In the NuSMV export

- Symbolic representation
 Profit from NuSMV internal OMDD representation
- State space reduction:
 - Outputs defined as macros
 - Projection of input components on transitions

Conclusions

In GINsim

- Input components have constant values
- Lossless reduction of (pseudo-)output components
 Preserve attractors and reachability, compute output values on demand

In the NuSMV export

- Symbolic representation
 Profit from NuSMV internal OMDD representation
- State space reduction:
 - Outputs defined as macros
 - Projection of input components on transitions

Study of the structure of the system's dynamics

- Counterexample may contain information about necessary environmental conditions to ensure specific reachability properties
- Impact of input components on attractor switches:
 - Definition of strong/weak stable states
 - Definition of strong/weak stable core ensembles

Study of the structure of the system's dynamics

Automated uncovering of necessary conditions for attractor reachability

$Complex \ attractors$

- Efficient methods for complex attractor identification (without performing simulation)
- Complex attractor characterization in terms of strong/weak patterns

Thank you!

Funding

- FCT Fundação para a Ciência e a Tecnologia
 - Postdoctoral grant (SFRH/BPD/75124/2010)
 - Project grant (PTDC/EIACCO/099229/2008)

SystemsX - Swiss Initiative in Systems Biology

CycliX project grant

11 ... : 0

UNIL | Université de Lausanne

Questions?!