Computing Symbolic Steady States of Boolean Networks

Hannes Klarner

AG Bio-Mathematics, Freie Universität Berlin, Germany

Lausanne, April, 2014

Bundesministerium für Bildung und Forschung

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Overview

Background

Boolean Networks Symbolic Steady States

Applications

Model Reduction Cyclic Attractors

Computing Symbolic Steady States

Prime Implicants 0-1 Optimization Problem

Case Studies

MAPK Signaling Network Performance

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

1: Background

Boolean Networks

- Boolean domain $\mathbb{B} = \{0, 1\}$
- ▶ Boolean Expression $f ::= 0 | 1 | v | \overline{f} | f_1 \cdot f_2 | f_1 + f_2$
- ▶ Boolean network $V = \{v_1, \ldots, v_n\}, F = \{f_1, \ldots, f_n\}$

- States $S = \{s : V \to \mathbb{B}\}$
- Notation for states: 0011
- Evaluation $f(s) \in \mathbb{B}$ and $F(s) \in S$
- Steady states $S = \{s \in S \mid F(s) = s\}$

1: Background Running Example

$$\begin{array}{ll} f_1 = v_1 + v_2 & f_1(1101) = 1 + 1 = 1 \\ f_2 = v_1 \cdot v_4 & f_2(1101) = 1 \cdot 1 = 1 \\ f_3 = \overline{v_1} \cdot v_4 & f_3(1101) = \overline{1} \cdot 1 = 0 \\ f_4 = \overline{v_3} & f_4(1101) = \overline{0} = 1 \end{array} \end{array} \begin{array}{ll} F(1101) = 1101 \\ F(0000) = 0001 \\ \mathcal{S} = \{1101\} \end{array}$$

<□ > < @ > < E > < E > E のQ @

1: Background Symbolic States

- ▶ Symbolic State $PS = \{p : U_p \subseteq V \rightarrow \mathbb{B}\}$
- Notation for symbolic states 0₂1₃
- ▶ Reference $S[p] = \{s \in S \mid \forall v \in U_p : s(v) = p(v)\}$

• Size
$$|p| := |U_p|$$

- ▶ *p* and *q* are **consistent** if $\forall v \in U_p \cap U_q : p(v) = q(v)$
- ▶ Partial ordering $p \le q$ if p, q are consistent and $U_p \subseteq U_q$
- If p, q are consistent then the **union** $p \sqcup q$ exists, e.g.

$$\mathbf{0}_1\sqcup\mathbf{0}_2=\mathbf{0}_1\mathbf{0}_2$$

1: Background

Symbolic Steady States and Seeds

- f[p] denotes the expression obtained from f by substituting p
- The image F[p] of p under F = {f₁,..., f_n} is q : U_q → B defined by
 - $U_q := \{v_i \in V \mid f_i[p] \text{ is constant}\}$

•
$$q(v_i) := f_i[p]$$
, for all $v_i \in U_q$

- Symbolic Steady States $SymS = \{p \in PS | F[p] = p\}$
- Seeds $\{p \in PS | F[p] \ge p\}$
- ▶ **Percolation** $p \in Seeds$ implies $F[p], F^2[p], F^3[p] \dots \in Seeds$
- Note that

$$\mathcal{S} \subseteq \textit{Sym}\mathcal{S} \subseteq \textit{Seeds}$$

1: Background Running Example

$$\begin{array}{lll} p := 1_1 & q := 0_1 0_2 & r := 1_3 1_4 \\ f_1[p] = 1 & f_1[q] = 0 & f_1[r] = v_1 + v_2 \\ f_2[p] = 1 \cdot v_4 & f_2[q] = 0 & f_2[r] = v_1 \cdot 1 \\ f_3[p] = 0 & f_3[q] = \overline{0} \cdot v_4 & f_3[r] = \overline{v_1} \cdot 1 \\ f_4[p] = \overline{v_3} & f_4[q] = \overline{v_3} & f_4[r] = 0 \\ F[p] = 1_1 0_3 > p & F[q] = 0_1 0_2 = q & F[r] = 0_4 \not\geq r \end{array}$$

p is a seed, q is a symbolic steady state, r is neither

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Seeds = $\{\emptyset, 1_1, 0_1 0_2, 1101\}$
- $Sym S = \{ \emptyset, 0_1 0_2, 1101 \}$

Overview

Applications

- Model Reduction
- Cyclic Attractors

2: Application Dynamics

- State transition graph (S, \rightarrow)
- Asynchronous
 - $s \hookrightarrow t \text{ iff } \Delta(s,t) = 1 \text{ and } \Delta(t,F(s)) < \Delta(s,F(s))$
- **Trap set** $R \subseteq S$ s.t. for all $s \to t : s \in R \implies t \in R$
- Attractor $X \subseteq S$ is an inclusion-wise minimal trap set

- ► |X| = 1 steady state
- |X| > 1 cyclic attractor

Theorem: If $p \in Seeds$ then S[p] is a trap set.

2: Application Running Example

The asynchronous state transition graph (S, \hookrightarrow)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

2: Application

Model Reduction

• Trap set induced symbolic state p = Stab(R)

$$U_p := \{ v \in V \mid \forall r, s \in R : r(v) = s(v) \}$$

- p(v) := r(v) for arbitrary $r \in R$
- Note $S[Stab(R)] \supseteq R$
- Model reduction
 - R a trap set and p := Stab(R)
 - Trajectories with initial state $s_1 \in R$ are governed by

$$V_{p} := \{ v \in V \mid v \notin U_{p} \}$$
$$F_{p} := \{ f_{i}[p] \mid f_{i} \in F, v_{i} \in V_{p} \}$$

Model reduction with seeds: $p \in Seeds$ implies Stab(p) = p

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

2: Application Running Example

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reduction by $q = 1_1$

2: Application Cyclic Attractors

- ▶ Maximal symbolic steady states max(SymS) (w.r.t. ≤)
- $Sym S = \{ \emptyset, 0_1 0_2, 1101 \}$

•
$$\max(SymS) = \{0_10_2, 1101\}$$

Theorem: $|\{p \in \max(SymS) \mid |p| < n\}|$ is a lower bound for cyclic attractors.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Overview

Computing Symbolic Steady States

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Prime Implicants
- 0-1 Optimization Problem

3: Computing Symbolic Steady States Prime Implicants

- Prime implicant p is a c-prime implicant of f if
 - ▶ *f*[*p*] = *c*
 - for all $q \leq p$: $f[q] \neq c$
- The prime implicants PI of (V, F)

 $PI := \{(p, c, v_i) \in PS \times \mathbb{B} \times V \mid p \text{ is a } c \text{-prime implicant of } f_i\}$

3: Computing Symbolic Steady States Prime Implicant Graph

Prime Implicant Graph $(\mathcal{N}, \mathcal{A})$ where

$$\mathcal{N} := \{ p \in PS \mid |p| = 1 \}$$

•
$$\mathcal{A} \subseteq 2^{\mathcal{N}} \times 2^{\mathcal{N}}$$
 is defined by

$$lpha: \mathcal{P}I
ightarrow 2^{\mathcal{N}} imes 2^{\mathcal{N}}, (p,c,v_i) \mapsto (\{p_1,\ldots,p_{|p|}\},\{q\})$$
 where

▶
$$p = p_1 \sqcup \cdots \sqcup p_{|p|}$$

▶ $q \in PS$ is defined by $U_q := \{v_i\}$ and $q(v_i) := c$.

• The head of
$$a \in \mathcal{A}$$
 is $H(a) := q$

• The tail of
$$a \in \mathcal{A}$$
 is $T(a) := p$

3: Computing Symbolic Steady States Running Example

PI	\mathcal{A}
$(1_1,1,v_1)$	a_1
$(1_2, 1, v_1)$	a ₂
$(0_1 0_2, 0, v_1)$	a ₃
$(1_11_4, 1, v_2)$	a ₄
$(0_1, 0, v_2)$	a_5
$(0_4, 0, v_2)$	a ₆
$(0_11_4, 1, v_3)$	a ₇
$(1_1, 0, v_3)$	<i>a</i> 8
$(0_4, 0, v_3)$	a ₉
$(0_3, 1, v_4)$	a_{10}
$(1_3, 0, v_4)$	a_{11}

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

3: Computing Symbolic Steady States Arcs and Symbolic States

• $A \subseteq \mathcal{A}$ is **consistent** if

 $\forall a, b \in A : H(a) \text{ and } H(b) \text{ are consistent}$

▶ Induced symbolic state of consistent $A = \{a_1, ..., a_m\} \subseteq A$

$$H(A) := H(a_1) \sqcup \cdots \sqcup H(a_m)$$

• $A \subseteq \mathcal{A}$ is **stable** if

$$\forall a \in A : \exists B \subseteq A : T(A) \leq H(B)$$

3: Computing Symbolic Steady States Running Example

$$B = \{a_3, a_5\}$$

$$C = \{a_1\}$$

$$D_1 = \{a_1, a_4, a_8, a_{10}\}$$

$$D_2 = \{a_2, a_4, a_8, a_{10}\}$$

$$D_3 = \{a_1, a_2, a_4, a_8, a_{10}\}$$

 $H(B) = 0_1 0_2$ $H(C) = 1_1$ $H(D_i) = 1101$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

3: Computing Symolic Steady States 0-1 Optimization Problem

Theorem: $p \in Seeds$ if and only if there is a stable and consistent $A \subseteq A$ such that H(A) = p.

Corollary: Inclusion-wise maximal stable and consistent arc sets induce maximal seeds and therefore maximal symbolic steady states.

► Can solve the 0-1 optimization problem with ILP formulation

Overview

Case Studies

MAPK Signaling Network

Performance

MAPK Signaling Pathway

G. Luca, et al. "Integrative Modelling of the Influence of MAPK Network on Cancer Cell Fate Decision." PLoS Computational Biology, 2013.

MAPK Signaling Pathway

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- n = 53, |PI| = 181 solved in < 1 sec.
- $|\max(Sym\mathcal{S})| = 18, \quad |\mathcal{S}| = 12$
- \Rightarrow Lower bound on cyclic attractors: 6

MAPK Signaling Pathway

Performance

Summary

- Python script: sourceforge.net/projects/boolnetfixpoints
- ▶ **Preprint**: *nbn-resolving.de/urn:nbn:de:0296-matheon-12823*

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank You!

Alexander Bockmayr PhD supervisor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Heike Siebert group leader