Attractor identification and quantification in asynchronous discrete dynamics

Nuno D. Mendes^{2,3} Pedro T. Monteiro^{1,3} Jorge Carneiro¹ Elisabeth Remy^4 Claudine Chaouiya¹

¹Instituto Gulbenkian de Ciência, Oeiras, PT

²Instituto de Biologia Experimental Técnologica, Oeiras, PT

³INESC-ID, Lisboa, PT

⁴Institut de Mathématiques de Luminy, Marseille, FR

3rd CoLoMoTo meeting, Lausanne, Switzerland April 18, 2014

1 Introduction

2 Methods

3 Results

4 Conclusions and Prospects

Discrete modelling: logical formalism (Thomas and d'Ari, Biological Feedback 1989)

Discrete modelling: logical formalism (Thomas and d'Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) $\mathcal{R}=(\mathcal{G}, K)$

- $\mathcal{G} = \{g_i\}_{i=0,...,n}$ is a set of regulatory components
- $Max : \mathcal{G} \to \mathbb{N}^*$ associates a maximum level M_i to each component g_i
- $S = \prod_{g_i \in \mathcal{G}} D_i$: is the state space, where $D_i = \{0, \dots, Max(g_i)\}$
- $\forall g_i : K_i : S \rightarrow D_i$ is the regulatory function specifying the behaviour of g_i

Discrete modelling: logical formalism (Thomas and d'Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) $\mathcal{R} = (\mathcal{G}, K)$

- $\mathcal{G} = \{g_i\}_{i=0,...,n}$ is a set of regulatory components
- $Max : \mathcal{G} \to \mathbb{N}^*$ associates a maximum level M_i to each component g_i
- $S = \prod_{g_i \in \mathcal{G}} D_i$: is the state space, where $D_i = \{0, \dots, Max(g_i)\}$
- $\forall g_i : K_i : S \rightarrow D_i$ is the regulatory function specifying the behaviour of g_i

State transition graph (STG)

The dynamic behaviour of an LRG, is represented by an STG where:

- \blacksquare nodes are states in ${\mathcal S}$
- and arcs $(v, w) \in S^2$ denote transitions between states

Background: Toy example (Boolean)

$$\begin{array}{ll} {\cal K}_0(v)=1 & \mbox{if } v_0=1 \lor v_1=0 \lor v_2=1 \\ {\cal K}_1(v)=1 & \mbox{if } v_0=0 \lor v_2=0 \\ {\cal K}_2(v)=1 & \mbox{if } v_0=1 \land v_1=1 \end{array}$$

$$\begin{array}{ll} {\cal K}_0(v)=1 & \mbox{if } v_0=1 \lor v_1=0 \lor v_2=1 \\ {\cal K}_1(v)=1 & \mbox{if } v_0=0 \lor v_2=0 \\ {\cal K}_2(v)=1 & \mbox{if } v_0=1 \land v_1=1 \end{array}$$

Background: Toy example (Boolean)

$$\begin{array}{ll} {\cal K}_0(v)=1 & \mbox{if } v_0=1 \lor v_1=0 \lor v_2=1 \\ {\cal K}_1(v)=1 & \mbox{if } v_0=0 \lor v_2=0 \\ {\cal K}_2(v)=1 & \mbox{if } v_0=1 \land v_1=1 \end{array}$$

Attractors

Correspond to asymptotic behaviours where:

- all gene levels are maintained
- long-lasting oscillating behaviour

Stable state Complex attractor

Attractors

Correspond to asymptotic behaviours where:

- all gene levels are maintained
- long-lasting oscillating behaviour

Stable state Complex attractor

Trajectories quantification

- The weighted number of trajectories towards an attractor represents the structural biases of the STG
- Hidden assumption: successor states are equiprobable
- This assumption can easily be modified introducing weights

Attractors

Correspond to asymptotic behaviours where:

- all gene levels are maintained
- long-lasting oscillating behaviour

Stable state Complex attractor

Trajectories quantification

- The weighted number of trajectories towards an attractor represents the structural biases of the STG
- Hidden assumption: successor states are equiprobable
- This assumption can easily be modified introducing weights

Central question

What is the likelihood of reaching an attractor from a given portion of the state space?

Objective

- Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s), quantify the trajectories towards the attractor(s)
- Identify/characterize unknown attractor(s)

Objective

- Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s), quantify the trajectories towards the attractor(s)
- Identify/characterize unknown attractor(s)

Size of the State Transition Graphs

	# States	
# Components	Boolean	3-valued
3	8	27
10	1 024	59 049
20	1 048 576	3 486 784 401
30	1 073 741 824	205 891 132 094 649
40	1 099 511 627 776	12 157 665 459 056 928 801

Objective

- Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s), quantify the trajectories towards the attractor(s)
- Identify/characterize unknown attractor(s)

Size of the State Transition Graphs

	# States	
# Components	Boolean	3-valued
3	8	27
10	1 024	59 049
20	1 048 576	3 486 784 401
30	1 073 741 824	205 891 132 094 649
40	1 099 511 627 776	12 157 665 459 056 928 801

Challenge

Combinatorial explosion!

1 Introduction

2 Methods

3 Results

4 Conclusions and Prospects

- Using OMDDs
- Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)
- Using reduction techniques and network motifs

(Zañudo and Albert, PLoS One 2013)

(Naldi et al., CMSB 2007)

With full (reachable) STG exploration

- Using ROBDDs
- Using HTG

(Garg et al., RECOMB 2007)

(Bérengier et al., Chaos 2013)

7

- Using OMDDs
- Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)
- Using reduction techniques and network motifs

(Zañudo and Albert, PLoS One 2013)

(Naldi et al., CMSB 2007)

With full (reachable) STG exploration

- Using ROBDDs
- Using HTG
- FireFront

(Garg et al., RECOMB 2007)

(Bérengier et al., Chaos 2013)

(Mendes, Monteiro et al., ECCB 2014 submitted)

- Using OMDDs
- Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)
- Using reduction techniques and network motifs

(Zañudo and Albert, PLoS One 2013)

(Naldi et al., CMSB 2007)

With full (reachable) STG exploration

- Using ROBDDs
- Using HTG
- FireFront
- Monte Carlo simulations
 - BOOLNET

(Garg et al., RECOMB 2007)

(Bérengier et al., Chaos 2013)

(Mendes, Monteiro et al., ECCB 2014 submitted)

(Müssel et al., Bioinformatics 2010)

- Using OMDDs
- Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)
- Using reduction techniques and network motifs

(Zañudo and Albert, PLoS One 2013)

(Naldi et al., CMSB 2007)

With full (reachable) STG exploration

- Using ROBDDs
- Using HTG
- FireFront
- Monte Carlo simulations
 - BOOLNET
 - Avatar

(Garg et al., RECOMB 2007)

(Bérengier et al., Chaos 2013)

(Mendes, Monteiro et al., ECCB 2014 submitted)

(Müssel et al., Bioinformatics 2010) (Mendes, Monteiro et al., ECCB 2014 submitted)

- Using OMDDs
- Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)
- Using reduction techniques and network motifs

With full (reachable) STG exploration

- Using ROBDDs
- Using HTG
- FIREFRONT
- Monte Carlo simulations
 - BOOLNET
 - AVATAR

Trajectory characterization approach:

MABOSS

(Naldi et al., CMSB 2007)

(Zañudo and Albert, PLoS One 2013)

(Garg et al., RECOMB 2007)

(Bérengier et al., Chaos 2013)

(Mendes, Monteiro et al., ECCB 2014 submitted)

(Müssel et al., Bioinformatics 2010) (Mendes, Monteiro et al., ECCB 2014 submitted)

(Stoll et al., BMC Syst Biol 2012)

Intuition

- Explore the STG from an initial condition
- Divide and carry probability to successor states
- Accumulate probability in states with no successors stable states
- \blacksquare Do not explore states with probability below α

The algorithm maintains 3 state sets:

- *F* the current firefront
- N the set of neglected states
- A the set of attractors

$$\alpha = \frac{1}{16}$$
 max iterations = 10

Start exploration from given initial condition v_1 , with unitary probability

Iteration = 1 $F = \{v_1\}$ $N = \emptyset$ $A = \emptyset$

 $\alpha = \frac{1}{16}$ max iterations = 10

Carry probability to successors dividing it by the number of successors – current firefront

Iteration = 2 $F = \{v_2, v_5\}$ $N = \emptyset$ $A = \emptyset$

$$\alpha = \frac{1}{16}$$
 max iterations = 10

States with no successors are attractors and accumulate probability

Iteration = 3 $F = \{v_3, v_4, v_6\}$ $N = \emptyset$ $A = \{v_7\}$

$$\alpha = \frac{1}{16}$$
 max iterations = 10

States with no successors are attractors and accumulate probability

 $\begin{array}{l} \text{Iteration} = 4 \\ F = \{v_1, v_3, v_4, v_6\} \\ N = \emptyset \\ A = \{v_7, v_8\} \end{array}$

$$\alpha = \frac{1}{16}$$
 max iterations = 10

States with no successors are attractors and accumulate probability

 $\begin{array}{l} \text{Iteration} = 5 \\ F = \{v_1, v_2, v_3, v_4, v_5, v_6\} \\ N = \emptyset \\ A = \{v_7, v_8\} \end{array}$

$$\alpha = \frac{1}{16}$$
 max iterations = 10

States accumulate probability given by multiple predecessor states States with probability below α are moved to a special set – neglected states – and are no longer explored

Iteration = 6 $F = \{v_1, v_2, v_3, v_4, v_6\}$ $N = \{v_5\}$ $A = \{v_7, v_8\}$

$$\alpha = \frac{1}{16}$$
 max iterations = 10

States in the neglected set still accumulate probability and can be moved back to the firefront

Iteration = 7 $F = \{v_3, v_5\}$ $N = \{v_1, v_2, v_4, v_6\}$ $A = \{v_7, v_8\}$

 $\alpha = \frac{1}{16}$ max iterations = 10

States in the neglected set still accumulate probability and can be moved back to the firefront

Iteration = 8 $F = \{v_4, v_6\}$ $N = \{v_1, v_2\}$ $A = \{v_7, v_8\}$

$$\alpha = \frac{1}{16}$$
 max iterations = 10

States in the neglected set still accumulate probability and can be moved back to the firefront

Iteration = 9 $F = \{v_1, v_3, v_6\}$ $N = \{v_2\}$ $A = \{v_7, v_8\}$

$$\alpha = \frac{1}{16}$$
 max iterations = 10

Execution halts when the firefront is empty or the maximum number of iterations is reached

 $\begin{array}{l} \text{Iteration} = 10 \\ F = \{v_2, v_3\} \\ N = \{v_4, v_5\} \\ A = \{v_7, v_8\} \end{array}$

$$\alpha = \frac{1}{16}$$
 max iterations = 1

Execution halts when the firefront is empty or the maximum number of iterations is reached

Iteration = 10 $F = \{v_2, v_3\}$ $N = \{v_4, v_5\}$ $A = \{v_7, v_8\}$ Residual = $\frac{31}{128}$

 \blacksquare The maximum number of iterations and the α parameters control the running time and the precision

• The maximum number of iterations and the α parameters control the running time and the precision

- Cannot directly identify complex attractors
- Large transient cycles may take too long to distribute probability
- "Wide" STGs may hurry every state to the neglected set
 - \blacksquare Lowering α may help, but the $\# {\rm states}$ in the firefront grows very fast

- Exploration starts at a given initial state v_1
- Next state is picked at random from set of successors (random walk)
- Exploration stops when a stable state is reached
- Repeat for n simulations
- Number of trajectories towards an attractor measures its probability

- Exploration starts at a given initial state v_1
- Next state is picked at random from set of successors (random walk)
- Exploration stops when a stable state is reached
- Repeat for n simulations
- Number of trajectories towards an attractor measures its probability

- May get stuck in large transients
- Is not able to identify complex attractors (unless they are already known)
Intuition

- Modified Monte Carlo simulation
- When a cycle is detected, the STG is re-wired to remove the cycle new incarnation of the STG
 - Transitions between cycle members are replaced by transitions to the cycle exits
 - Equivalent to performing a random walk over Markov chains (proven)

And so forth ...

The number of simulation runs controls the running time and precision

The number of simulation runs controls the running time and precision

- Huge transients and complex attractors may exhaust memory (when they correspond to an entire portion of a very large state space)
- Very large cycles may not be easily re-wired (cycle re-wiring requires a matrix inversion step)

FIREFRONT and AVATAR

An oracle may be provided to identify a known complex attractor

- Prior to cycle re-wiring a phase of τ -expansion is performed
 - \blacksquare Cycles are expanded by τ steps in an attempt to find a larger connected component to re-wire

Prior to cycle re-wiring a phase of τ -expansion is performed

- \blacksquare Cycles are expanded by τ steps in an attempt to find a larger connected component to re-wire
- \blacksquare The value of τ is doubled for every new incarnation in the same simulation run

Prior to cycle re-wiring a phase of τ -expansion is performed

- \blacksquare Cycles are expanded by τ steps in an attempt to find a larger connected component to re-wire
- \blacksquare The value of τ is doubled for every new incarnation in the same simulation run
- If the number of re-wired transitions surpasses a predefined limit (default=2¹⁵), the expansion phase is **unbounded**

• **Complex attractors** identified in one run are used to create an **oracle** to identify member states in subsequent simulation runs

- Complex attractors identified in one run are used to create an oracle to identify member states in subsequent simulation runs
- Large transients re-wired in one run are also carried to subsequent runs

The initial conditions of the simulation runs may be:

- identical (fixed or random)
- a sample (of the entire state space, or a portion of the state space identified by an oracle)

1 Introduction

2 Methods

3 Results

4 Conclusions and Prospects

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Random model 1	0	10	1	1	1 024
Random model 2	0	10	1	1	1 024
Random model 3	0	15	1	1	32 768
Random model 4	0	15	2	0	32 768

Model characteristics

Random models generated using $\operatorname{BOOLNET}$ Selected 4 models:

(Müssel et al., Bioinformatics 2010)

- **2** models with 10 components + 2 models with 15 components
 - each component with 2 randomly selected regulators
 - logical parameters randomly selected
- Selected models capable of generating a common basin of attraction

Synthetic models: Random model 1

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Random model 1	0	10	1	1	1 024

Synthetic models: Random model 1

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Random model 1	0	10	1	1	1 024

Synthetic models: Random model 1

Name	# Com	ponents	# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Random model 1	0	10	1	1	1 024

Initial		FIREFRON	$\alpha = 10^{-1}$	5)		AVATAR (10 ⁴ run	s)
conditions	Time	Attractors	Residual	Iterations	Time	Attractors (p)	Avg depth
uncommitted	57s	SS1 (0.67)	0.33	10 ³	12.4min	SS1 (0.67) CA2 (0.33)	9.18 5.3

Residual: Neglected + Firefront sets

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Random model 4	0	15	2	0	32 768

Initial		FIREFRON	$\Gamma (\alpha = 10^{-1})$	5)	AVATAR (10 ⁴ runs)		
conditions	Time	Attractors	Residual	Iterations	Time	Attractors (p)	Avg depth
uncommitted	SS1	SS1 (0.40)	0.00	39	7.6min	SS1 (0.46)	20.64
uncommitted	5.211	SS2 (0.51)	0.09	30	7.0000	SS2 (0.54)	15.11

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Mammalian Cell Cycle	1	9	1	1	1 024

Model characteristics

Has small state space

- Half the state space towards a stable state
- Half the state space towards a complex attractor (Fauré et al., Bioinformatics 2006)

Biological models: Mammalian cell cycle

Initial		FireFront	$\alpha = 10^{-5}$)	AVATAR (10 ⁴ runs)			
conditions	Time	Attractors	Residual	Iterations	Time	Attractors (p)	Avg depth	
CycD = 1	2.08min	(0.00)	1.00	10 ³	2.2min	CA1 (1.00)	5.95	
compling	N/A due to complian				0.2Emin	CA1 (0.50)	4.32	
sampling	ing N/A - due to sampling			2.5511111	SS2 (0.50)	2.76		

Biological models: Mammalian cell cycle

Biological models: Segment Polarity

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Segment Polarity (1-cell)	2	12	3	0	186 624
Segment Polarity (2-cells)	0	24	3	0	$pprox$ 9.7 $ imes$ 10 7
Segment Polarity (4-cells)	0	48	15	0	$\approx 9.4 \times 10^{17}$

Model characteristics

- No complex attractors
- Multi-stability
- Big state space
- Many small transient cycles

(Sánchez et al., Int. J. Dev. Biol. 2008)

Biological models: Segment Polarity

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Segment Polarity (1-cell)	2	12	3	0	186 624
Segment Polarity (2-cells)	0	24	3	0	$pprox$ 9.7 $ imes$ 10 7
Segment Polarity (4-cells)	0	48	15	0	$pprox$ 9.4 $ imes$ 10 17

Name	Initial		FIREFRONT	$\alpha = 10^{-5}$)		AVATAR (10 ⁴ ru	ins)
	conditions	Time	Attractors	Residual	Iterations	Time	Attractors (p)	Avg depth
Segment Polarity (1-cell)	Wg-expressing cell	5s	SS1 (0.84)	$< 10^{-3}$	43	617s	SS1 (0.84)	
	0 1 1 0 1		SS2 (0.16)		-5) AVATAR (10 ⁴ r tterations Time Attractors (p) 43 617s SS1 (0.84) 83 30m SS2 (0.16) 83 30m SS2 (0.1093) SS3 (0.0003) SS5 (0.0528) 52 1.49h SS4 (0.0135) SS3 (0.0014) SS2 (10 ⁻⁴) SS2 (10 ⁻⁴)			
			SS1 (0.65)	0.25	83	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SS1 (0.8904)	
Segment Polarity (2-cells)	Pair rule	17.74h	551 (0.05)				SS2 (0.1093)	
			552 (0.10)					
				0.84			SS7 (0.8702)	
							SS1 (0.0619)	
			SS1 (0.13)				SS5 (0.0528)	
Segment Polarity (4-cells)	Pair rule	111.7h	SS2 (0.02)		52	1.49h	SS4 (0.0135)	
,			SS3 (0.01)				SS3 (0.0014)	
			()				SS6 (10 ⁻⁴)	
							SS2 (10 ⁻⁴)	

Biological models: Segment Polarity

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Segment Polarity (1-cell)	2	12	3	0	186 624
Segment Polarity (2-cells)	0	24	3	0	$pprox$ 9.7 $ imes$ 10 7
Segment Polarity (4-cells)	0	48	15	0	$pprox$ 9.4 $ imes$ 10 17

Attractor probability estimation for Droso.Sanchez.12v.4cells

Name	# Components		# Attractors		State space size
	Inputs	Proper	Stable	Complex	
Th differentiation reduced	13	21	434	0	$pprox$ 3.9 $ imes$ 10 10

Model characteristics

- Multi-stability (input-dependent)
- Huge state space
- Many stable states

Legend:

 $\begin{array}{l} \text{SS1} - \text{Th17} \\ \text{SS2} - \text{Th2ROR}\gamma\text{t} + \\ \text{SS3} - \text{Th0} \\ \text{SS4} - \text{Anergic Th1ROR}\gamma\text{t} + \end{array}$

(Naldi et al., PLoS Comp Biol 2010)

Name	# Components		# Attractors		State space size
	Inputs	Proper	Stable	Complex	
Th differentiation reduced	13	21	434	0	pprox 3.9 $ imes$ 10 ¹⁰

Initial		FireFront ($\alpha = 10^{-5}$)			AVATAR (10 ⁴ runs)			
conditions	Time	Attractors	Residual	Iterations	Time	Attractors (p)	Avg depth	
Th17+inputsampling		N/A - due	e to samplin	g	1.5min	SS1 (0.63) SS2 (0.13) SS3 (0.12) SS4 (0.12)	1.00 7.00 13.00 4.00	
Legend: SS1 - Th17 SS2 - Th2RORγt+ SS3 - Th0								

SS4 - Anergic Th1ROR γ t+

Biological models: Th differentiation

Name	# Components		# At	tractors	State space size
	Inputs	Proper	Stable	Complex	
Th differentiation reduced	13	21	434	0	$pprox$ 3.9 $ imes$ 10 10

Attractor probability estimation for th-reduced

Legend:

 $\begin{array}{l} SS1 &- Th17 \\ SS2 &- Th2ROR\gamma t+ \\ SS3 &- Th0 \\ SS4 &- Anergic Th1ROR\gamma t+ \end{array}$
Name	Initial	FireFront ($\alpha = 10^{-5}$)			AVATAR (10 ⁴ runs)			BoolNet (10 ⁴ runs)		
	conditions	Time	Attractors (p)	Residual	Iterations	Time	Attractors (p)	Avg depth	Time	Attractors (p)
Random 1	uncommitted	57s	PA1 (0.67)	0.33	10 ³	12.4min	PA1 (0.67)	9.18	19s	PA1 (0.67)
							CA2 (0.33)	5.3		CA2 (0.33)
Random 2	uncommitted	2s	PA1 (0.25)	0.75	10 ³	1.8min	PA1 (0.25)	6.43	19s	PA1 (0.25)
							CA2 (0.75)	9.18		CA2 (0.75)
Random 3	uncommitted	30s	PA1 (0.21)	0.79	10 ³	5.3min	PA1 (0.21)	8.83	20s	PA1 (0.20)
							CA2 (0.79)	8.45		CA2 (0.80)
Random 4	uncommitted	3.2h	PA1 (0.40) PA2 (0.51)	0.09	38	7.6min	PA1 (0.46)	20.64	19s	PA1 (0.46)
							PA2 (0.54)	15.11		PA2 (0.54)
Synthetic 1	uncommitted	82h	PA1 (0.56)	0.44	10 ³	35min	PA1 (0.58)	18.45	185.5h	PA1 (0.60)
							CA1 (0.42)	9.01		CA2 (0.40)
Synthetic 2	uncommitted	51.6h	PA1 (0.06)	0.94	10 ³	58 5min	PA1 (0.07)	27.15	120h	PA1 (0.08)
			PA2 (10 ⁻⁺)				PA2 (0.93)	13.85		PA2 (0.92)
Mammalian Cell Cycle	CycD = 1	2.08min	(0.00)	1.00	103	2.2min	CA1 (1.00)	5.95	3.25min	CA1 (1.00)
Mammalian Cell Cycle	sampling		N/A - due to	sampling		2.35min	CA1 (0.50)	4.32	1.83min	CA1 (0.50)
				Jamping			PA2 (0.50)	2.76		PA2 (0.50)
Segment Polarity (1-cell)	Wg-expressing cell	5s	PA1 (0.84)	$< 10^{-3}$	43	8.2min	PA1 (0.84)	8.84	N/A -	Boolean only
3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0 1 0 0		PA2 (0.16)		-		PA2 (0.16)	11.17	'	
Segment Polarity (2-cells)	Pair rule	17.2h	PA1 (0.65) PA2 (0.10)	0.25	83	25.2min	PA1 (0.89)	38.83	N/A - Boolean only	
							PA2 (0.11)	18.64		
							PA3 (10 ')	49.00		
	Pair rule	105.7h	PA1 (0.13) PA2 (0.02) PA3 (0.01)	0.84	52	1.2h	PA1 (0.87)	59.12	N/A - Boolean on	
							PA2 (0.06)	43.40		
Segment Polarity (4-cells)							PA3 (0.06)	30.51		
							PA4 (0.01)	67.01		Boolean only
							PA5 (10)	55.10		
							PA6 (10 ')	90.50		
							PA7 (10 ⁻⁴)	138.00		
Th differentiation reduced	Th17+inputsampling		N/A - due to	sampling		1.5min	PA1 (0.63)	1.00	N/A - B	
							PA2 (0.13)	1.00		Boolean only
							PA3 (0.12)	13.00		only
							PA4 (0.12)	4.00		

1 Introduction

2 Methods

3 Results

Challenge

- Characterize and quantify the attractors in the context of **discrete asynchronous** dynamics
- The difficulty lies in the size and structure of the state spaces

Challenge

- Characterize and quantify the attractors in the context of discrete asynchronous dynamics
- The difficulty lies in the size and structure of the state spaces

- There is no ideal solution The structure of the state space is unknown a priori
- We propose two approaches to tackle the problem

- Best approach to use depends on the structure of the STG
- The number and size of transient cycles have an impact on both FIREFRONT and AVATAR

- Best approach to use depends on the structure of the STG
- The number and size of transient cycles have an impact on both FIREFRONT and AVATAR

FireFront

Fast and quasi-exact for STGs which are not too "wide"

- Best approach to use depends on the structure of the STG
- The number and size of transient cycles have an impact on both FIREFRONT and AVATAR

FireFront

Fast and quasi-exact for STGs which are not too "wide"

AVATAR

- Well-suited to deal with cycles (complex attractors and transients)
- Rare attractors may need many simulation runs to be found

- Instead of considering equiprobable successor states, weights can be introduced (per component)
- Integrate the approaches in GINsim

Thank you!

Funding: FCT - Fundação para a Ciência e a Tecnologia									
	Previous	Current							
NDM	PTDC/EIACCO/099229/2008	EXCL/EEI-ESS/0257/2012							
PTM	SFRH/BPD/75124/2010	PEst-OE/EEI/LA0021/2013							
		IF/01333/2013							

Availability

http://compbio.igc.gulbenkian.pt/nmd/node/59

Questions?!

