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Background

Discrete modelling: logical formalism (Thomas and d’Ari, Biological Feedback 1989)

Logical regulatory graph (LRG) R= (G, K )

G = {gi}i=0,...,n is a set of regulatory components

Max : G → N∗ associates a maximum level Mi to each component gi

S =
∏

gi∈G
Di : is the state space, where Di = {0, . . . ,Max(gi )}

∀gi : Ki : S → Di is the regulatory function specifying the behaviour of gi

State transition graph (STG)

The dynamic behaviour of an LRG, is represented by an STG where:

nodes are states in S
and arcs (v ,w) ∈ S2 denote transitions between states
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Background: Toy example (Boolean)

K0(v) = 1 if v0 = 1 ∨ v1 = 0 ∨ v2 = 1
K1(v) = 1 if v0 = 0 ∨ v2 = 0
K2(v) = 1 if v0 = 1 ∧ v1 = 1

g0 g1

g2

=⇒
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001
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101
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111
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Problem

Attractors

Correspond to asymptotic behaviours where:

all gene levels are maintained Stable state

long-lasting oscillating behaviour Complex attractor

Trajectories quantification

The weighted number of trajectories towards an attractor represents the
structural biases of the STG

Hidden assumption: successor states are equiprobable

This assumption can easily be modified introducing weights

Central question

What is the likelihood of reaching an attractor from a
given portion of the state space?
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Problem

Objective

Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s),
quantify the trajectories towards the attractor(s)

Identify/characterize unknown attractor(s)

Size of the State Transition Graphs
# States

# Components Boolean 3-valued
3 8 27

10 1 024 59 049
20 1 048 576 3 486 784 401
30 1 073 741 824 205 891 132 094 649
40 1 099 511 627 776 12 157 665 459 056 928 801

Challenge

Combinatorial explosion!

5



Problem

Objective

Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s),
quantify the trajectories towards the attractor(s)

Identify/characterize unknown attractor(s)

Size of the State Transition Graphs
# States

# Components Boolean 3-valued
3 8 27

10 1 024 59 049
20 1 048 576 3 486 784 401
30 1 073 741 824 205 891 132 094 649
40 1 099 511 627 776 12 157 665 459 056 928 801

Challenge

Combinatorial explosion!

5



Problem

Objective

Given a (set of) initial condition(s) and, optionally, a (set of) attractor(s),
quantify the trajectories towards the attractor(s)

Identify/characterize unknown attractor(s)

Size of the State Transition Graphs
# States

# Components Boolean 3-valued
3 8 27

10 1 024 59 049
20 1 048 576 3 486 784 401
30 1 073 741 824 205 891 132 094 649
40 1 099 511 627 776 12 157 665 459 056 928 801

Challenge

Combinatorial explosion!

5



Outline

1 Introduction

2 Methods

3 Results

4 Conclusions and Prospects

6



Attractor characterization approaches

Without STG exploration

Using OMDDs (Naldi et al., CMSB 2007)

Using SAT (de Jong and Page, IEEE/ACM Trans. Comp. Biol. Bioinf. 2008)

Using reduction techniques and network motifs (Zañudo and Albert, PLoS One 2013)

With full (reachable) STG exploration

Using ROBDDs (Garg et al., RECOMB 2007)

Using HTG (Bérengier et al., Chaos 2013)

FireFront (Mendes, Monteiro et al., ECCB 2014 submitted)

Monte Carlo simulations
Boolnet (Müssel et al., Bioinformatics 2010)

Avatar (Mendes, Monteiro et al., ECCB 2014 submitted)

Trajectory characterization approach:

MaBoSS (Stoll et al., BMC Syst Biol 2012)
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Approach: Quasi-exact (FireFront algorithm)

Intuition

Explore the STG from an initial condition

Divide and carry probability to successor states

Accumulate probability in states with no successors – stable states

Do not explore states with probability below α

The algorithm maintains 3 state sets:

F – the current firefront

N – the set of neglected states

A – the set of attractors

8



Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

Start exploration from given initial condition v1, with unitary probability

Iteration = 1
F = {v1}
N = ∅
A = ∅

v1 1

v2

v3

v4v5

v6

v7

v8
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

Carry probability to successors dividing it by the number of successors – current
firefront

Iteration = 2
F = {v2, v5}
N = ∅
A = ∅

v1

v2
1
2

v3

v4v5
1
2

v6

v7

v8
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

States with no successors are attractors and accumulate probability

Iteration = 3
F = {v3, v4, v6}
N = ∅
A = {v7}

v1

v2

v3

1
4

v4
1
4
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v6
1
4

v7
1
4

v8
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

States with no successors are attractors and accumulate probability

Iteration = 4
F = {v1, v3, v4, v6}
N = ∅
A = {v7, v8}
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

States with no successors are attractors and accumulate probability

Iteration = 5
F = {v1, v2, v3, v4, v5, v6}
N = ∅
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

States accumulate probability given by multiple predecessor states
States with probability below α are moved to a special set – neglected states –
and are no longer explored

Iteration = 6
F = {v1, v2, v3, v4, v6}
N = {v5}
A = {v7, v8}

v1
1

16

v2
1
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v3

1
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v5
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32

v7
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32

v8
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

States in the neglected set still accumulate probability and can be moved back
to the firefront

Iteration = 7
F = {v3, v5}
N = {v1, v2, v4, v6}
A = {v7, v8}

v1
3

64

v2
1

32

v3

1
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v4
1

32
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v7
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v8
11
32
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

States in the neglected set still accumulate probability and can be moved back
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Iteration = 8
F = {v4, v6}
N = {v1, v2}
A = {v7, v8}

v1
3

64

v2
1

32

v3

v4
1
8

v5

v6
5

64

v7
5

16

v8
13
32

9



Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

States in the neglected set still accumulate probability and can be moved back
to the firefront

Iteration = 9
F = {v1, v3, v6}
N = {v2}
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Approach: Quasi-exact (FireFront algorithm)

α = 1
16

max iterations = 10

Execution halts when the firefront is empty or the maximum number of
iterations is reached

Iteration = 10
F = {v2, v3}
N = {v4, v5}
A = {v7, v8}

v1

v2
11

128

v3

1
16

v4
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v5
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max iterations = 10

Execution halts when the firefront is empty or the maximum number of
iterations is reached

Iteration = 10
F = {v2, v3}
N = {v4, v5}
A = {v7, v8}
Residual = 31
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v3

1
16

v4
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128
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v6

v7
5

16

v8
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Approach: Quasi-exact (FireFront algorithm)

The maximum number of iterations and the α parameters control the
running time and the precision

Cannot directly identify complex attractors

Large transient cycles may take too long to distribute probability

“Wide” STGs may hurry every state to the neglected set

Lowering α may help, but the #states in the firefront grows very fast
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Approach: Stochastic (Monte Carlo algorithm)

Exploration starts at a given initial state v1

Next state is picked at random from set of successors (random walk)

Exploration stops when a stable state is reached

Repeat for n simulations

Number of trajectories towards an attractor measures its probability

Problems

May get stuck in large transients

Is not able to identify complex attractors (unless they are already known)
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Approach: Stochastic (Avatar algorithm)

Intuition

Modified Monte Carlo simulation

When a cycle is detected, the STG is re-wired to remove the cycle – new
incarnation of the STG

Transitions between cycle members are replaced by transitions to the cycle
exits
Equivalent to performing a random walk over Markov chains (proven)

12



Approach: Stochastic (Avatar algorithm)

Q0 =



0 1
2
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Approach: Stochastic (Avatar algorithm)

The number of simulation runs controls the running time and precision

Huge transients and complex attractors may exhaust memory
(when they correspond to an entire portion of a very large state space)

Very large cycles may not be easily re-wired
(cycle re-wiring requires a matrix inversion step)

14
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Optimizations & additional features

FireFront and Avatar

An oracle may be provided to identify a known complex attractor

15



Optimizations & additional features

Avatar

Prior to cycle re-wiring a phase of τ -expansion is performed
Cycles are expanded by τ steps in an attempt to find a larger connected
component to re-wire

The value of τ is doubled for every new incarnation in the same simulation
run
If the number of re-wired transitions surpasses a predefined limit
(default=215), the expansion phase is unbounded

15



Optimizations & additional features

Avatar

Prior to cycle re-wiring a phase of τ -expansion is performed
Cycles are expanded by τ steps in an attempt to find a larger connected
component to re-wire
The value of τ is doubled for every new incarnation in the same simulation
run

If the number of re-wired transitions surpasses a predefined limit
(default=215), the expansion phase is unbounded

15



Optimizations & additional features

Avatar

Prior to cycle re-wiring a phase of τ -expansion is performed
Cycles are expanded by τ steps in an attempt to find a larger connected
component to re-wire
The value of τ is doubled for every new incarnation in the same simulation
run
If the number of re-wired transitions surpasses a predefined limit
(default=215), the expansion phase is unbounded

15



Optimizations & additional features

Avatar

Complex attractors identified in one run are used to create an oracle to
identify member states in subsequent simulation runs

Large transients re-wired in one run are also carried to subsequent runs
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Optimizations & additional features

Avatar

The initial conditions of the simulation runs may be:

identical (fixed or random)

a sample (of the entire state space, or a portion of the state space
identified by an oracle)
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Synthetic models

Name # Components # Attractors State space size
Inputs Proper Stable Complex

Random model 1 0 10 1 1 1 024
Random model 2 0 10 1 1 1 024
Random model 3 0 15 1 1 32 768
Random model 4 0 15 2 0 32 768

Model characteristics

Random models generated using Boolnet (Müssel et al., Bioinformatics 2010)

Selected 4 models:

2 models with 10 components + 2 models with 15 components
each component with 2 randomly selected regulators
logical parameters randomly selected

Selected models capable of generating a common basin of attraction

17



Synthetic models: Random model 1

Name # Components # Attractors State space size
Inputs Proper Stable Complex

Random model 1 0 10 1 1 1 024

Initial FireFront (α = 10−5) Avatar (104 runs)
conditions Time Attractors Residual Iterations Time Attractors (p) Avg depth

uncommitted 57s SS1 (0.67) 0.33 103 12.4min
SS1 (0.67)
CA2 (0.33)

9.18
5.3

Residual: Neglected + Firefront sets

18
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Synthetic models: Random model 4

Name # Components # Attractors State space size
Inputs Proper Stable Complex

Random model 4 0 15 2 0 32 768

Initial FireFront (α = 10−5) Avatar (104 runs)
conditions Time Attractors Residual Iterations Time Attractors (p) Avg depth

uncommitted 3.2h
SS1 (0.40)
SS2 (0.51)

0.09 38 7.6min
SS1 (0.46)
SS2 (0.54)

20.64
15.11
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Biological models: Mammalian cell cycle

Name # Components # Attractors State space size
Inputs Proper Stable Complex

Mammalian Cell Cycle 1 9 1 1 1 024

Model characteristics

Has small state space

Half the state space towards a stable state

Half the state space towards a complex attractor (Fauré et al., Bioinformatics 2006)
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Biological models: Segment Polarity

Name # Components # Attractors State space size
Inputs Proper Stable Complex

Segment Polarity (1-cell) 2 12 3 0 186 624
Segment Polarity (2-cells) 0 24 3 0 ≈ 9.7× 107

Segment Polarity (4-cells) 0 48 15 0 ≈ 9.4× 1017

Model characteristics

No complex attractors

Multi-stability

Big state space

Many small transient cycles (Sánchez et al., Int. J. Dev. Biol. 2008)

21



Biological models: Segment Polarity

Name # Components # Attractors State space size
Inputs Proper Stable Complex

Segment Polarity (1-cell) 2 12 3 0 186 624
Segment Polarity (2-cells) 0 24 3 0 ≈ 9.7× 107

Segment Polarity (4-cells) 0 48 15 0 ≈ 9.4× 1017

Name Initial FireFront (α = 10−5) Avatar (104 runs)
conditions Time Attractors Residual Iterations Time Attractors (p) Avg depth

Segment Polarity (1-cell) Wg-expressing cell 5s
SS1 (0.84)
SS2 (0.16)

<10−3 43 617s
SS1 (0.84)
SS2 (0.16)

Segment Polarity (2-cells) Pair rule 17.74h
SS1 (0.65)
SS2 (0.10)
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SS7 (0.8702)
SS1 (0.0619)
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Biological models: Th differentiation

Name # Components # Attractors State space size
Inputs Proper Stable Complex

Th differentiation reduced 13 21 434 0 ≈ 3.9× 1010

Model characteristics

Multi-stability (input-dependent)

Huge state space

Many stable states (Naldi et al., PLoS Comp Biol 2010)

Legend:
SS1 - Th17
SS2 - Th2RORγt+
SS3 - Th0
SS4 - Anergic Th1RORγt+
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Complete results

Name Initial FireFront (α = 10−5) Avatar (104 runs) BoolNet (104 runs)
conditions Time Attractors (p) Residual Iterations Time Attractors (p) Avg depth Time Attractors (p)

Random 1 uncommitted 57s PA1 (0.67) 0.33 103 12.4min
PA1 (0.67)
CA2 (0.33)

9.18
5.3

19s
PA1 (0.67)
CA2 (0.33)

Random 2 uncommitted 2s PA1 (0.25) 0.75 103 1.8min
PA1 (0.25)
CA2 (0.75)

6.43
9.18

19s
PA1 (0.25)
CA2 (0.75)

Random 3 uncommitted 30s PA1 (0.21) 0.79 103 5.3min
PA1 (0.21)
CA2 (0.79)

8.83
8.45

20s
PA1 (0.20)
CA2 (0.80)

Random 4 uncommitted 3.2h
PA1 (0.40)
PA2 (0.51)

0.09 38 7.6min
PA1 (0.46)
PA2 (0.54)

20.64
15.11

19s
PA1 (0.46)
PA2 (0.54)

Synthetic 1 uncommitted 82h PA1 (0.56) 0.44 103 35min
PA1 (0.58)
CA1 (0.42)

18.45
9.01

185.5h
PA1 (0.60)
CA2 (0.40)

Synthetic 2 uncommitted 51.6h
PA1 ( 0.06 )
PA2 (10−4)

0.94 103 58.5min
PA1 (0.07)
PA2 (0.93)

27.15
13.85

120h
PA1 (0.08)
PA2 (0.92)

Mammalian Cell Cycle CycD = 1 2.08min - - (0.00) 1.00 103 2.2min CA1 (1.00) 5.95 3.25min CA1 (1.00)

Mammalian Cell Cycle sampling N/A - due to sampling 2.35min
CA1 (0.50)
PA2 (0.50)

4.32
2.76

1.83min
CA1 (0.50)
PA2 (0.50)

Segment Polarity (1-cell) Wg-expressing cell 5s
PA1 (0.84)
PA2 (0.16)

<10−3 43 8.2min
PA1 (0.84)
PA2 (0.16)

8.84
11.17

N/A - Boolean only

Segment Polarity (2-cells) Pair rule 17.2h
PA1 (0.65)
PA2 (0.10)

0.25 83 25.2min
PA1 ( 0.89 )
PA2 ( 0.11 )
PA3 (10−4)

38.83
18.64
49.00

N/A - Boolean only

Segment Polarity (4-cells) Pair rule 105.7h
PA1 (0.13)
PA2 (0.02)
PA3 (0.01)

0.84 52 1.2h

PA1 ( 0.87 )
PA2 ( 0.06 )
PA3 ( 0.06 )
PA4 ( 0.01 )
PA5 (10−3)
PA6 (10−4)
PA7 (10−4)

59.12
43.40
36.51
67.01
55.10
96.50

138.00

N/A - Boolean only

Th differentiation reduced Th17+inputsampling N/A - due to sampling 1.5min

PA1 (0.63)
PA2 (0.13)
PA3 (0.12)
PA4 (0.12)

1.00
7.00

13.00
4.00

N/A - Boolean only
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Conclusions

Challenge

Characterize and quantify the attractors in the context of discrete
asynchronous dynamics

The difficulty lies in the size and structure of the state spaces

There is no ideal solution
The structure of the state space is unknown a priori

We propose two approaches to tackle the problem
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Conclusions

Best approach to use depends on the structure of the STG

The number and size of transient cycles have an impact on both
FireFront and Avatar

FireFront

Fast and quasi-exact for STGs which are not too “wide”

Avatar

Well-suited to deal with cycles (complex attractors and transients)

Rare attractors may need many simulation runs to be found
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Prospects

Instead of considering equiprobable successor states, weights can be
introduced (per component)

Integrate the approaches in GINsim
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