a novel tool for the qualitative modelling of epithelial patterning

Pedro L. Varela, Pedro T. Monteiro, Nuno D. Mendes, Adrien Fauré, Claudine Chaouiya
Network Modelling Group @IGC

April 17th 2014

Modelling pattern formation in tissues:

single cell
network controlling cell fate
epithelium
single cell model
cell-cell communication
environment cues

Introduction

Celular automata that simulates an epithelium represented by a grid of hexagonal cells in the framework of logical model

GINsim exports logical models in the SBML-qual format

Single Cell logical regulatory module(LRM)

$$K_1(v) = 1 \text{ if } v_2 = 0 \land v_0 = 1$$

 $K_2(v) = 1 \text{ if } v_3 = 1$
 $K_3(v) = 1 \text{ if } v_1 = 1$

Logical Formalism

Synchronous updating scheme: all components are updated at the same time

Proper components: internal to the module Input components: external influences (environmental cues, neighbours)

Epithelial model

Integration function : $K_{00}(v) = 1$ if $v_{31} = 1 \land v_{32} = 1$

Integration inputs are mapped to proper components (Mendes et al. 2013)

A logical integration function sets the relationships between signals

Neighbourhood relations

We defined a grammar for the neighbourhood relations

t: threshold m,M: neighbours d:D: distance

C(t,m,M,d)

C(t,m,M,d:D) C(t,m,M) logical connectors:

Integration Function

 $G_0=1$ if $G_3(1,1,_,1)$

 $G_0=1$ if $G_3(1,1,4,2:3)$

 $G_0=1$ if $G_3(1,1,_,2)$ | $G_2(_,1,1)$

Description

at least 1 neighbour at distance 1 with G3 = 1

at least 1 and at most 4 neighbours at distance 2 or 3 with G3 = 1

at least 1 neighbour at distance 2 with G3=1 **OR** exactly one neighbour with G2 at maximum value

Simulation

Update Input Components

integration functions

Synchronously update cells

using the library LogicalModel

Sync due to size of the grid and multivalue leading to a combinatorial explosion

Priorities

The user can select the order a proper component or a set of proper components are updated.

Restriction over priorities classes (Faure et al. 2006)

Each class has at least one component and all classes are synchronous

```
for classSet in priorityClasses:
    setChanged=false
    for C in classSet:
        if vi(C)!=vi+1(C):
            update C
            setChanged=true
        if setChanged:
            break
```

Simulation

Update Input Components

integration functions

Check if there are priorities

Synchronously update priority set components

using the library LogicalModel

Perturbations

Full mutants: all grid is affected by that mutation

Clones: one cell or a set of cells

Set to a single value or to a range of values

Use LogicalModel to retrieve the perturbed model

Perturbations can refer to more than one component (multiple perturbations)

for cell in gridCell:
 if cellHasPerturbation:
 PerturbedModel =
 perturbation.apply(model)

Example

Drosophila Eggshell Patterning

Node	Level	Logical function
Roof	1 a	interior & EGF:1 & !BMP
Floor	1 a	interior & (EGF:2 (EGF:1 & BMP)) & Roof_adj
Operculum	1 a	interior & (EGF:2 (EGF:1 & BMP)) & !Roof_adj

Integration Input: Roof_adj

Fauré, A., Vreede, B. M., Sucena, É., & Chaouiya, C. (2014). A Discrete Model of Drosophila Eggshell Patterning Reveals Cell-Autonomous and Juxtacrine Effects. *PLoS computational biology*, *10*(3), e1003527.

Initial Conditions Panel

Inputs Definitions Panel

Perturbations Panel

Priorities Panel

Drosophila Eggshell Patterning WT simulation

Image of grid can be saved at any step

An iteration state can be saved as an initial state

Drosophila Eggshell Patterning WT simulation

Iteration 0

Iteration 1

Iteration 2

Image of grid can be saved at any step

An iteration state can be saved as an initial state

the new version

New version of EpiLog <u>under development</u>

the new version

New version of EpiLog under development

Workspace with several Epithelia

An epithelium consists of a grid (fixed dimensions), regulatory rules, and integration functions

Each epithelium can be cloned to create a new epithelium

An epithelium supports cells with different models

open questions

Alternative updating schemes

Relaxing grid configurations

Cell movement

Proliferation and cell death

EpiLog is available at www.ginsim.org/epilog

8 A

Thank you!