Modeling with SQUAD

Luis Mendoza

Imendoza@biomedicas.unam.mx Instituto de Investigaciones Biomédicas Universidad Nacional Autónoma de México

Differentiation of human cells

Williams et al. (2012) Cell 149. DOI: 10.1016/j.cell.2012.05.015

The big picture

Cell differentiation as transitions among attractors

What is SQUAD?

- Stands for Standardized Qualitative Dynamical systems.
- Approximates a Boolean network with the use of a set of ordinary differential equations.
- Variables representing the state of activation are normalized: they are constrained in the range [0,1].
- Enables a direct comparison of the attractors obtained with a continuous model against the attractors of a purely binary model.

- There are many biological systems where there are gradients, and concentration-dependent effects.
- There is not enough quantitative data available for such systems.

Mendoza and Xenarios (2006). Theor. Biol. Med. Model. 3: 13

Theoretical Biology and Medical Modelling

BioMed Central

Research

SQUAD

Open Access

A method for the generation of standardized qualitative dynamical systems of regulatory networks Luis Mendoza^{*} and Ioannis Xenarios

Address: Serono Pharmaceutical Research Institute, 14, Chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland Email: Luis Mendoza* - luis mendoza@serono.com; Ioannis Xenarios - ioannis.xenarios@serono.com * Corresponding author

Published: 16 March 2006

Theoretical Biology and Medical Modelling2006, 3:13 doi:10.1186/1742-4682-3-13

This article is available from: http://www.tbiomed.com/content/3/1/13

© 2006Mendoza and Xenarios; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Received: 12 December 2005 Accepted: 16 March 2006

Discrete equations

Equation 1.

$$\left[\left(x_1^a(t) \lor x_2^a(t) \dots \lor x_n^a(t)\right) \land \neg (x_1^i(t) \lor x_2^i(t) \dots \lor x_m^i(t)) \quad \$\right]$$

$$x_{i}(t+1) = x_{1}^{a}(t) \vee x_{2}^{a}(t) \dots \vee x_{n}^{a}(t) \qquad §§$$

 $\lor, \land, and \neg$ are the logical operators OR, AND, and NOT $x_i \in \{0, 1\}$ $\{x_n^a\}$ is the set of activators of x_i $\{x_m^i\}$ is the set of inhibitors of x_i § is used if x_i has activators and inhibitors §§ is used if x_i has only activators §§ is used if x_i has only inhibitors

Discrete equations

The logical formalism developed by René Thomas enables us to dissociate a complex network into a well-defined set of feedback circuits and check their dynamical roles individually, yet keeping complete control of the ways in which these circuits are interconnected.

Continuous equations

Equation 3. $\frac{dx_i}{dt} = \frac{-e^{0.5h} + e^{-h(\omega_i - 0.5)}}{(1 - e^{0.5h})(1 + e^{-h(\omega_i - 0.5)})} - \gamma_i x_i$ $\boldsymbol{\omega}_{\mathrm{I}} = \begin{bmatrix} \left(\frac{1+\sum\alpha_{n}}{\sum\alpha_{n}}\right) \left(\frac{\sum\alpha_{n}\mathbf{x}_{n}^{a}}{1+\sum\alpha_{n}\mathbf{x}_{n}^{a}}\right) \left(1-\left(\frac{1+\sum\beta_{m}}{\sum\beta_{m}}\right) \left(\frac{\sum\beta_{m}\mathbf{x}_{m}^{i}}{1+\sum\beta_{m}\mathbf{x}_{m}^{i}}\right)\right) \\ \left(\frac{1+\sum\alpha_{n}}{\sum\alpha_{n}}\right) \left(\frac{\sum\alpha_{n}\mathbf{x}_{n}^{a}}{1+\sum\alpha_{n}\mathbf{x}_{n}^{a}}\right) \\ \left(1-\left(\frac{1+\sum\beta_{m}}{\sum\beta_{m}}\right) \left(\frac{\sum\beta_{m}\mathbf{x}_{m}^{i}}{1+\sum\beta_{m}\mathbf{x}_{m}^{i}}\right)\right) \end{bmatrix}$ 66 \$\$\$ $0 \leq x_i \leq 1$ $0 \le \omega_i \le 1$ $h, \alpha_n, \beta_m, \gamma_i > 0$ $\{x_n^a\}$ is the set of activators of x_i $\{x_n^i\}$ is the set of inhibitors of x_i § is used if x_i has activators and inhibitors §§ is used if x; has only activators §§§ is used if x; has only inhibitors

The parameter h

Relative insensitivity to parameter h

Mendoza and Pardo (2010). Theor. Biosci. 129: 283

Continuous equations

Equation 3. $\frac{dx_i}{dt} = \frac{-e^{0.5h} + e^{-h(\omega_i - 0.5)}}{(1 - e^{0.5h})(1 + e^{-h(\omega_i - 0.5)})} - \gamma_i x_i$ $\boldsymbol{\omega}_{\mathrm{I}} = \begin{bmatrix} \left(\frac{1+\sum\alpha_{n}}{\sum\alpha_{n}}\right) \left(\frac{\sum\alpha_{n}\mathbf{x}_{n}^{a}}{1+\sum\alpha_{n}\mathbf{x}_{n}^{a}}\right) \left(1-\left(\frac{1+\sum\beta_{m}}{\sum\beta_{m}}\right) \left(\frac{\sum\beta_{m}\mathbf{x}_{m}^{i}}{1+\sum\beta_{m}\mathbf{x}_{m}^{i}}\right)\right) \\ \left(\frac{1+\sum\alpha_{n}}{\sum\alpha_{n}}\right) \left(\frac{\sum\alpha_{n}\mathbf{x}_{n}^{a}}{1+\sum\alpha_{n}\mathbf{x}_{n}^{a}}\right) \\ \left(1-\left(\frac{1+\sum\beta_{m}}{\sum\beta_{m}}\right) \left(\frac{\sum\beta_{m}\mathbf{x}_{m}^{i}}{1+\sum\beta_{m}\mathbf{x}_{m}^{i}}\right)\right) \end{bmatrix}$ 66 \$\$\$ $0 \leq x_i \leq 1$ $0 \le \omega_i \le 1$ $h, \alpha_n, \beta_m, \gamma_i > 0$ $\{x_n^a\}$ is the set of activators of x_i $\{x_n^i\}$ is the set of inhibitors of x_i § is used if x_i has activators and inhibitors §§ is used if x; has only activators §§§ is used if x; has only inhibitors

Parameters α and β

Strength of interactions

SQUAD workflow

SQUAD Di Cara et al. (2007). BMC Bioinformatics 8: 462

BMC Bioinformatics

BioMed Central

Open Access

Software **Dynamic simulation of regulatory networks using SQUAD** Alessandro Di Cara¹, Abhishek Garg², Giovanni De Micheli², Ioannis Xenarios^{*3} and Luis Mendoza^{*4}

Address: ¹Merck Serono, Geneva, 9 Chemin des Mines, Switzerland, ²EPFL, Lausanne, Building INF ¥14, 19 Witzerland, ³Switse Institute of Bioinformatics, Vital-IT Group, Quartier Sorge – Batiment Genopode, CH-1015 Lausanne, Switzerland and ⁴Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de Mécico, Ciudad Universitaria, CP04510, Mécico

Email: Alessandro Di Cara - alessandro dicara@merckserono.net; Abhishek Garg - abhishek garg@epfl.ch; Giovanni De Micheli - Giovanni.demicheli@epfl.ch; Ioannis Xenarios* - Ioannis Xenarios@merckserono.net; Luis Mendoza* - Imendoza@biomedicas.umam.mx

* Corresponding authors

Published: 26 November 2007

Received: 22 August 2007 Accepted: 26 November 2007

BMC Bioinformatics 2007, 8:462 doi:10.1186/1471-2105-8-462

This article is available from: http://www.biomedcentral.com/1471-2105/8/462

© 2007 Di Cara et al; licensee BioMed Central Ltd.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (<u>http://creativecommons.org/licenses/by/2.0</u>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Workflow

Finding the steady states of a network with BDDs

Fig. 2. An example of Gene Regulatory Network

Fig.3. BDD representing the state space of example in figure [2] The dashed edges represent 0 evaluation of the variables and the solid edges represent the 1 evaluation. For clarity, edges going to 0-terminal are not shown in this figure.

Dynamics

Perturbations

Α

В

Edit Perturbation Protocol X	Edit Perturbation Protocol	
Tree view Text New	Tree view Text New	
Protokowie Protokowie - Distribution (6-1-1 Poles, rokałase-TRB)	Chair wearing".1, 0" modeling="UT-9"?? gentedsi.es(-1, P); gentedsi.es(-1, P); gentedsi.es(-1, P); gentedsi.es(-1, P); gentedsi.es(-1, P); gentedsi.es(-1, P); gentedsi.es(-1, P); outgingdes pursuestor="data" support PL-9" insert.P % outgingdes inserts="data" support PL-9" insert.P % outgingdes id="TPP" insert.P % outgi	
Cancel OK	Cancel	c.

SQUAD is part of ENFIN

http://www.enfin.org

BIOINFORMATICS ORIGINAL PAPER

Vol. 27 no. 10 2011, pages 1404–1412 doi:10.1093/bioinformatics/btr158

Systems biology

Advance Access publication March 30, 2011

A qualitative continuous model of cellular auxin and brassinosteroid signaling and their crosstalk

Martial Sankar^{1,*}, Karen S. Osmont¹, Jakub Rolcik², Bojan Gujas¹, Danuse Tarkowska², Miroslav Strnad², Ioannis Xenarios³ and Christian S. Hardtke^{1,*}

¹Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland, ²Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany Academy of Sciences of the Czech Republic, CZ-78371 Olomouc, Czech Republic and ³Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland

Associate Editor: Alfonso Valencia

SQUADD Used to model cyclic behavior

SQUADD is part of Bioconductor

http://www.bioconductor.org/packages/release/bioc/html/SQUADD.html

Modification of SQUAD

Sánchez-Corrales et al. (2010). J. Theor. Biol. 264: 971

Journal of Theoretical Biology 264 (2010) 971-983

The *Arabidopsis thaliana* flower organ specification gene regulatory network determines a robust differentiation process

Yara-Elena Sánchez-Corrales^{a,1}, Elena R. Álvarez-Buylla^{a,b}, Luis Mendoza^{b,c,*}

^a Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. CP04510, México

^b Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. CP04510, México

^c Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. CP04510, México

In the original version of SQUAD ...

... this is not possible

A Boolean Network

Its topology

A Boolean Network

Its associated functions

A Boolean Network

Attractors and basins of attraction

The continuous equations

$$\frac{dx_i}{dt} = \frac{-e^{0.5h_i} + e^{-h_i(\omega_i - 0.5)}}{(1 - e^{0.5h_i})(1 + e^{-h_i(\omega_i - 0.5)})} - \gamma_i X_i$$

 x_i is the activation level of node *i*.

 ω_i is the continuous form of the logical rule describing the response of the node.

- h_i is the gain of the input.
- γ_i is the decay rate.

$\textit{NOT} x \rightarrow 1 - x$

 $x AND y \rightarrow min(x, y)$

 $x \ OR \ y \rightarrow max(x, y)$

The fuzzy logic version of the NOT function

The fuzzy logic version of the AND function

F(x,y) = min(x,y)

The fuzzy logic version of the OR function

F(x,y) = max(x,y)

From a discrete to a continuous function

 $x \leftarrow a XOR b$

 $x \leftarrow (a AND NOT b) OR (NOT a AND b)$

 $x \leftarrow max(min(a, 1-b), min(1-a, b))$

 $\frac{dx_i}{dt} = \frac{-e^{0.5h_i} + e^{-h_i(\max(\min(a, 1-b), \min(1-a, b)) - 0.5)}}{(1 - e^{0.5h_i})(1 + e^{-h_i(\max(\min(a, 1-b), \min(1-a, b)) - 0.5)})} - \gamma_i X_i$

Finding attractors

Time series

Using SQUAD in Arabidopsis

Sánchez-Corrales et al. (2010). J. Theor. Biol. 264: 971

Attractors of the discrete model

	INF1	INF2	INF3	INF4	SEP	PET1	PET2	STM1	STM2	CAR
AG AP1	0	0	0	0	0	0	0	1	1	1
AP2 AP3	0	0	0	0	1	1	1	1	1	1
EMF1	1	1	1	1	0	0	0	0	0	0
FUL	0	0	0	0	0	0	0	1	1	1
PI	0	0	0	0	0	1	1	1	1	1
SEP TFL1	1	1	1	1	0	0	0	0	0	0
UFO WUS	0	1 0	0 1	1	0	1	0	1	0	0

Attractors of the continuous model (part 1)

	INF1	INF2	INF3	INF4	SEP	PET1	PET2	STM1	STM2	CAR
AG AP1 AP2 AP3 EMF1 FT FUL LFY PI SEP	1.3E - 9 1.0E - 9 1.2E - 9 1.2E - 9 1.0E + 0 1.1E - 9 1.2E - 9 8.6E - 10 1.2E - 9 1.2E - 9 1.2E - 9	1.3E - 9 1.0E - 9 1.2E - 9 1.2E - 9 1.0E + 0 1.1E - 9 1.2E - 9 8.7E - 10 1.2E - 9 1.2E - 9 1.2E - 9	1.2E - 9 1.1E - 9 1.2E - 9 1.0E + 0 1.1E - 9 1.2E - 9 1.2E - 9 8.4E - 10 1.2E - 9 1.1E - 9 1.1E - 9	1.2E - 9 1.1E - 9 1.2E - 9 1.2E - 9 1.0E+0 1.1E - 9 1.2E - 9 8.3E - 10 1.2E - 9 8.3E - 10 1.2E - 9 1.0E - 9 1.0E - 9	1.1E - 9 1.0E+0 1.0E+0 9.5E - 10 2.1E - 9 1.0E+0 1.81E - 9 1.0E+0 1.3E - 9 1.0E+0 1.0E+0	1.1E - 9 1.0E+0 1.0E+0 1.0E+0 2.0E - 9 1.0E+0 1.8E - 9 1.0E+0 1.0E+0 1.0E+0 1.0E+0	9.6E - 10 1.0E+0 1.0E+0 1.0E+0 1.5E - 9 1.0E+0 1.5E - 9 1.0E+0 1.0E+0 1.0E+0 1.0E+0	1.0E+0 3.1E-9 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0	1.0E+0 2.0E -9 1.0E+0 1.0E+0 9.9E - 10 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0	1.0E+0 3.4E-9 1.0E+0 8.6E-10 1.4E-9 1.0E+0 1.0E+0 1.0E+0 1.0E+0 1.0E+0
TFL1 UFO WUS	1.0E+0 5.4E-10 5.8E-10	1.0E+0 1.0E+0 5.9E-10	1.0E+0 5.2E-10 1.0E+0	1.0E+0 1.0E+0 1.0E+0 1.0E+0	9.4E - 10 5.2E - 10 5.5E - 10	9.2E - 10 1.0E+0 5.5E - 10	7.8E - 10 5.2E - 10 5.5E - 10	1.0E - 9 1.0E + 0 3.5E - 9	1.0E - 9 5.3E - 10 2.2E - 9	1.1E – 9 5.2E – 10 3.9E – 9

^a Values are averages of 50,000 runs (see Section 4). In all cases the associated standard deviations are smaller than 1.00E-9.

Attractors of the continuous model (part 2)

	NEW1	NEW2	NEW3	NEW4	NEW5	NEW6	NEW7	NEW8	NEW9	NEW10	NEW11	NEW12	NEW13	NEW14
AG	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	0
AP1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0	1
AP2	0.5	0.5	0.5	0.5	1	0.5	1	1	0.5	1	1	1	1	1
AP3	0	0.5	0	0.5	0	0.5	1	0	0.5	1	0.5	0.5	0.5	0.5
EMF1	0.5	0.5	0.5	0.5	0	0.5	0	0	0.5	0	0	0	0	0
FT	0.5	0.5	0.5	0.5	1	0.5	1	1	0.5	1	1	1	1	1
FUL	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1	0
LFY	0.5	0.5	0.5	0.5	1	0.5	1	1	0.5	1	1	1	1	1
PI	0.5	0.5	0.5	0.5	0.5	0.5	1	0.5	0.5	1	0.5	0.5	1	0.5
SEP	0.5	0.5	0.5	0.5	1	0.5	1	1	0.5	1	1	1	1	1
TFL1	0.5	0.5	0.5	0.5	0	0.5	0	0	0.5	0	0	0	0	0
UFO	0	1	0	1	0	0	1	0	0	1	0	0	0	0
wus	0	0	1	0.5	0	0	0	0.5	0.5	0.5	0	0.5	0	0

SQUAD in the modeling of T cells

Martínez-Sosa and Mendoza (2013). BioSystems 113: 96

SQUAD:

- It is a flexible modeling tool.
- It has been extensive tested in systems with fixed point attractors.
- It still needs to be fine-tuned to study cyclic attractors.

Ioannis Xenarios University of Lausanne Vital-IT. Swiss Institute of Bioinformatics Alessandro Di Cara Quartz Bio Abishek Garg Vital-IT, Swiss Institute of Bioinformatics Fátima Pardo Hong Kong University of Science and Technology Pablo Martínez Univesidad Nacional Autónoma de México