

110010010101001101 1001010100101001101

Influence of nuclear receptors on hepatocyte metabolism

Andreas Dräger

Center for Bioinformatics Tuebingen (ZBIT)

Bundesministeriur für Bildung und Forschung

inisterium g hung

The Center for Bioinformatics Tuebingen (ZBIT)

- Participation in the Virtual Liver Network:
 - A3.4: Linking signaling to metabolism
 - B5: Impact of inflammatory cytokines on ADME gene expression and drug detoxification
 - showcase steatosis
- Main focus on the development of quantitative models describing mutual influences across the levels of gene regulation, signaling, and metabolism
- Development of software and automated routines for simulation and model building

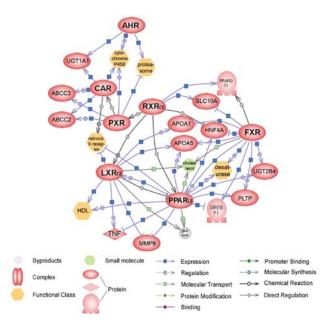
SPONSORED BY THE Federal Minist of Education and Research

A3.4: Linking signaling and metabolism

Central question:

- Investigate the influence of selected endogenous and exogenous signaling pathways on intermediary metabolism and detoxification functions
- Provide new solutions for the challenge of modeling the link between signaling cascades and metabolic networks
- Develop models that cover the main links between signaling and metabolism with respect to qualitative and quantitative properties (e.g., input/output behavior)

Selected example:

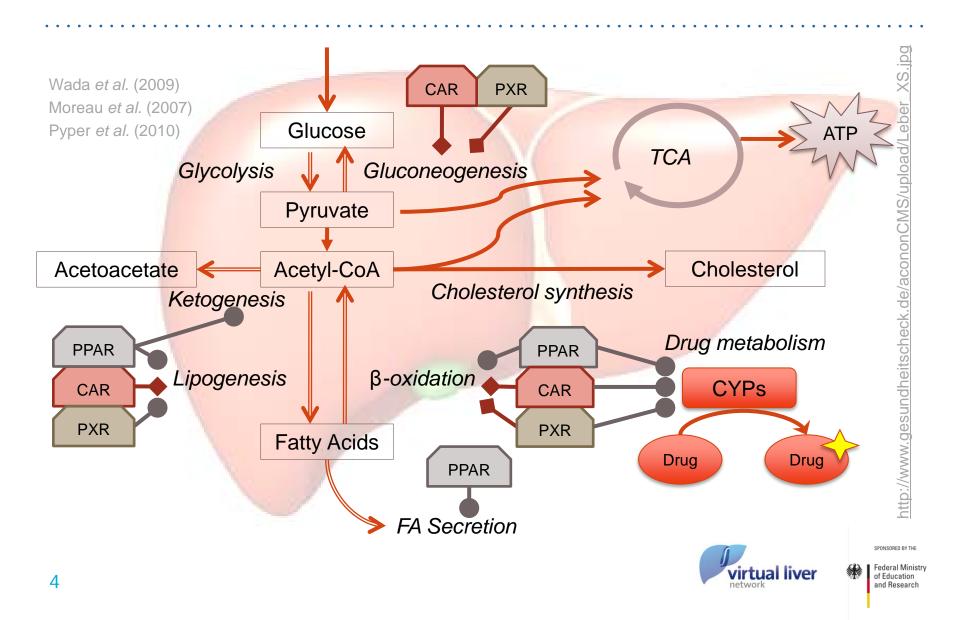

impact of nuclear receptor signaling on metabolism

Motivation:

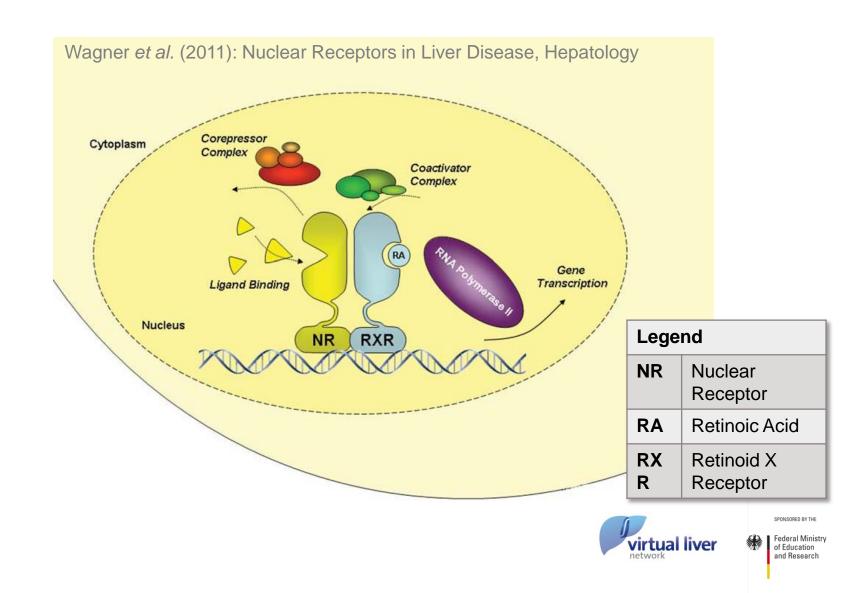
- NRs have coordinating role for many physiological and pathophysiological functions of liver, especially metabolism
- Research on NRs clearly underrepresented in VLN
- NRs connect endogenous metabolism (e.g., lipids, energy) with drug detoxification

Specific goal:

 Analyze and model signaling effects of CAR, PPARα, and PXR on endogenous and drug metabolism in human hepatocytes by integrating transcriptomic, proteomic, metabolomic, enzyme activity, and genetic data


Cross-talk and co-regulation among nuclear receptors

Woods C G et al. Toxicol Pathol 2007;35:474-494

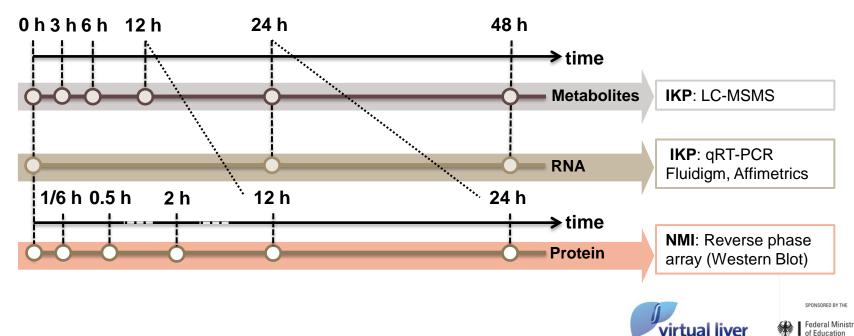


SPONSORED BY THE


Influence of CAR, PPAR α and PXR on hepatocyte metabolism

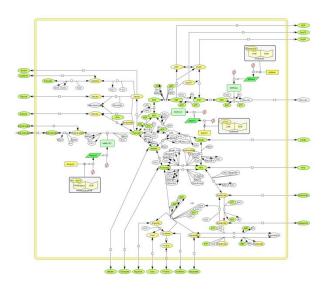
Gene-regulatory effect of the nuclear receptors

Experimental design and workflow



- NR-specific agonist/antagonist
- time-resolved readout of
 - high-quality quantitative transcriptomics (IKP)
 - (phospho-) proteomics of signaling pathway proteins (NMI)
- metabolic profiles of lipids (triglycerides, phospholipids), bile acids, central metabolites, and drug metabolism activities (IKP)

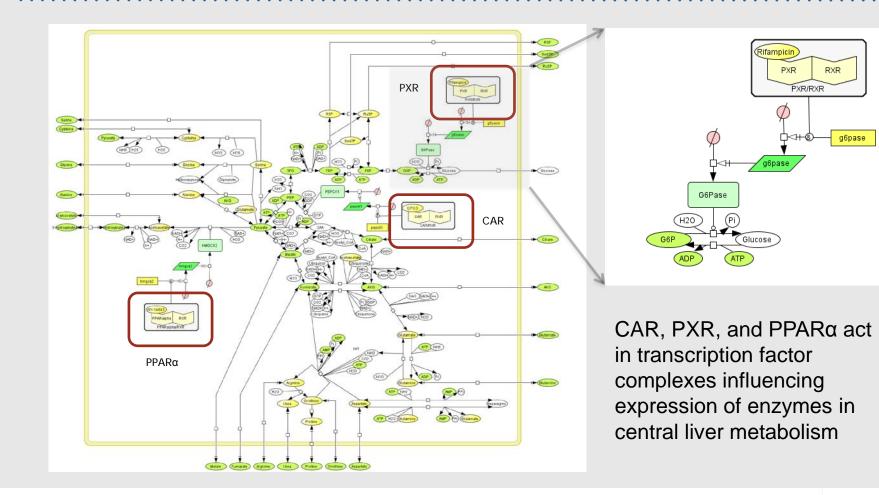
Validation tools:


- knock-down with lentiviral-delivered shRNAs
- ChIP, microarray
- genotype-phenotype correlation

and Research

Model of influence of nuclear receptors on metabolism

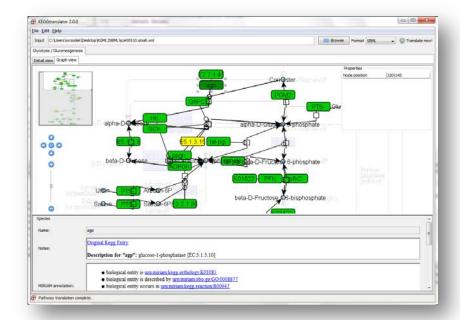
- Model explaining effects of nuclear receptor stimulation on metabolism
- Topology based on HepatoNet1 and KEGG database
- Current work: structural model refinement, flux analysis, and parameter estimation
- Extraction of known rate laws and parameters from SABIO-RK
- Automatic creation of missing Hill equations (gene regulation) and common modular rate laws using SBMLsqueezer
- In addition, gene-regulatory networks are under development for PXR, CAR, PPARα (currently without kinetic information) using Biobase data base (TRANSFAC), Ingenuity, literature
- Scheduled: Inclusion of protein phosphorylation states



SPONSORED BY THE Federal Minis of Education

and Researc

The influence of nuclear receptors on metabolism


SPONSORED BY THE

of Education

and Research

Modeling software: KEGGtranslator

- Translating KEGG pathways to
 - GraphML
 - SBML
 - SBML with qual extension
- Improve KEGG annotations
 - Automated modelling
 - Easy linkage of analysis results to KEGG pathways

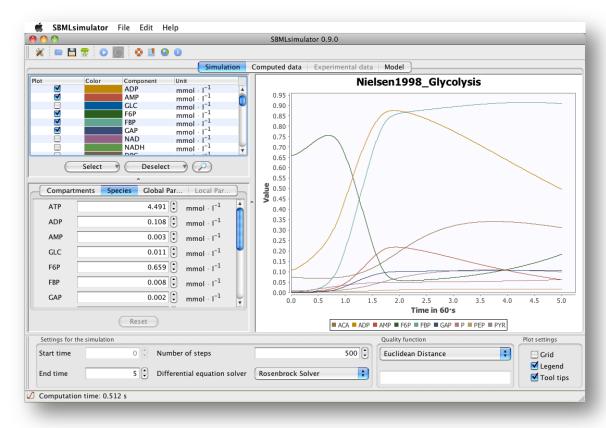
Wrzodek C, Dräger A, Zell A. KEGGtranslator: visualizing and converting the KEGG PATHWAY database to various formats, Bioinformatics, 2011.

http://www.cogsys.cs.uni-tuebingen.de/software/

SPONSORED BY THE

Modeling software: kinetic law generator

- Development of software to complement structural models with kinetic equations
- SBMLsqueezer:
 - A powerful rate law generator for biochemical networks
 - Annotation function of SBML models using MIRIAM and SBO standards
- Application of SBMLsqueezer for the creation of a differential equation system from the structural models in this project
- Internal data structure: JSBML


Dräger A, Hassis N, Supper J, Schröder S, and Zell A. SBMLsqueezer: a CellDesigner plug-in to generate kinetic rate equations for biochemical networks. *BMC Systems Biology*, 2(1):39, April 2008.

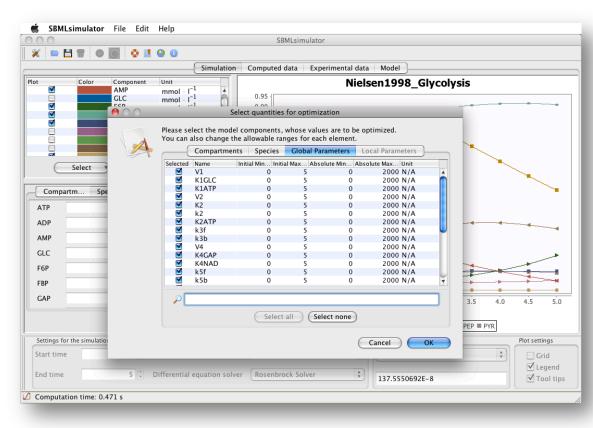
Modeling software: SBMLsimulator

Available for download at:

http://www.cogsys.cs.uni-tuebingen.de/software/SBMLsimulator/

Some key features

- Accurate: 100 % of the SBML Test Suite (980 models)
- **Fast**: 500 integration steps of the glycolysis (Biomodel 42) computed in 0.512 s.
- JSBML-based (Java library for SBML)
- **Platform independent**: Tested on Windows, Linux, and Mac OS
- **Bilingual user interface** (English and German)
- All program features also available through the command-line interface
- Nine numerical integration methods, including the Rosenbrock Solver for stiff systems
- Heuristic optimization framework EvA2 included



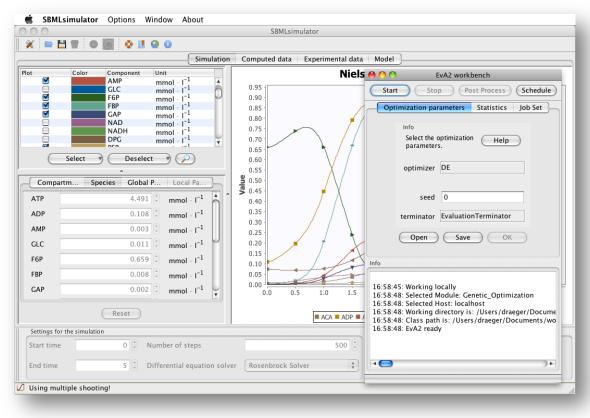
SPONSORED BY THE

Modeling software: SBMLsimulator

Available for download at:

http://www.cogsys.cs.uni-tuebingen.de/software/SBMLsimulator/

- Loading one or multiple experimental data sets
- Selection of optimization targets and quality measure
- Search function for easier selection of model components
- Multiple shooting and single shooting integration strategy possible
- Selection of the desired optimization procedure



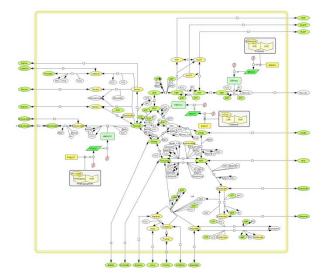
SPONSORED BY THE

Modeling software: SBMLsimulator with EvA2

Available for download at:

http://www.cogsys.cs.uni-tuebingen.de/software/SBMLsimulator/

- Nature inspired heuristic optimization algorithms included:
 - Genetic Algorithm
 - Simulated Annealing
 - Particle Swarm Optimization
 - **Differential Evolution**
 - **Evolution Strategy**
 - **Evolution Strategy with Covariance Matrix Adaptation**
 - Monte Carlo Optimization
 - Tribes
 - Multistart Hill Climber
 - Each algorithm with a large number of settings
- Dynamic update between • optimization results and graphical user interface
- Eight quality measures included, e.g., Euclidean Distance and **Relative Squared Error**



Federal Ministry of Education and Research

SPONSORED BY THE

Challenges

- Large number of parameters with uncertain values and the question of identifiability
- Different time scales (gene expression and metabolism)
- Extension of SBML for qualitative relationships (qual package)

SPONSORED BY THE

Publications

- (1) Schröder A. Inference of gene-regulatory networks in primary human hepatocytes. PhD thesis, University of Tuebingen, Tübingen, Germany, November 2011.
- (2) Schröder A, Klein K, Winter S, Schwab M, Bonin M, Zell A, and Zanger UM. Genomics of ADME gene expression: mapping expression quantitative trait loci relevant for absorption, distribution, metabolism and excretion of drugs in human liver. *The Pharmacogenomics Journal*, pages 1473-1150, September 2011.
- (3) Schröder A, Wollnik J, Wrzodek C, Dräger A, Bonin M, Burk O, Thomas M, Thasler WE, Zanger UM, and Zell A. Inferring statin-induced gene regulatory relationships in primary human hepatocytes. *Bioinformatics*, 27(18):2473-2477, July 2011.
- (4) Dräger A, Rodriguez N, Dumoussea M, Dörr A, Wrzodek C, Le Novère N, Zell A, and Hucka M. JSBML: a flexible Java library for working with SBML. *Bioinformatics*, 27(15):2167-2168, June 2011.
- (5) Schröder A, Wrzodek C, Wollnik J, Dräger A, Wanke D, Berendzen KW, and Zell A. Inferring transcriptional regulators for sets of co-expressed genes by multiobjective evolutionary optimization. In *IEEE Congress on Evolutionary Computation (CEC 2011)*, New Orleans, USA, June 2011.
- (6) Dräger A. Computational Modeling of Biochemical Networks. PhD thesis, University of Tuebingen, Tübingen, Germany, January 2011.

SPONSORED BY THE

Thank you for your attention!

IKP Stuttgart

U. Zanger, U. Hofmann, M. Thomas, B. Kandel, M. Klein

University of Tuebingen

A. Zell, A. Dräger, S. Tscherneck, R. Keller

NMI Reutlingen

M. Templin, T. Joos, U. Metzger