

Compaction

of logical state transition graphs

thieffry@ens.fr

2nd CoLoMoTo meeting, EMBL-EBI, Hinxton, March 27-28, 2012

Coping with the exponential growth of logical state transition graphs

- Model reduction
- Attractor identification
- Temporisation (e.g. priorities, delays, etc.)
- Compaction of state transition graphs

Bacteriophage lambda: regulatory graph

Thieffry & Thomas (1995)

Phage lambda model : logical rules

Node => target value	Logical Rule
CI => 2	!Cro CII
CI => 0	Otherwise
Cro => 3	ICI & ICro
Cro => 2	ICI & Cro
Cro => 0	CI
CII => 1	ICI & ICro & N
CII => 0	Otherwise
N => 1	ICI & ICro
N => 0	Otherwise

Thieffry & Thomas (1995)

Lambda phage model: state transition graph (STG)

Lambda phage model: state transition graph (STG)

Lambda phage model: graph of strongly connected components (GSCC)

Lambda phage model: hierarchical state transition graphs (HTG)

Content of HTG components (schemata)

Component	CI	Cro	CII	N
#11	0	0	0	
	0	0	1	1
	1	0	•	•
#47	0	1	0	•
10032	0	1	1	1
	0	2	0	1
	0	2	1	•
	0	3	0	1
	0	3	1	
	1	1	•	
	1	2	0	1
	1	2	1	
	1	3	0	1
	1	3	1	
	2	1	•	*
	2	2	•	*
	2	3	•	
#2	1	2	0	0
	1	3	0	0
#3	2	0	0	1
	2	0	1	*
#2 (terminal)	0	2	0	0
	0	3	0	0
2000	2	0	0	0

Over-approximation

Asynchronous STG starting from initial state 0000

Asynchronous STG starting from initial state 1000

To a path between two states in the STG correspond always a path in the HTG, but the reverse is not always true

STG vs GSCC vs HTG

An inducible form of C/EBPα permits highly efficient reprogramming of pre-B cells into macrophages

ProB reprogramming model: regulatory graph

ProB reprogramming model: logical rules

Node => target value	Logical Rule
PU1 =>2 PU1=>1	(CEBPa & CEBPb & PU1) (PU1 & CEBPb:2) (CEBPa CEBPb PU1) & !(CEBPa & CEBPb & PU1) & !(PU1 & CEBPb:2)
CEBPa=>1	(AP1 & !EBF) (PU1 & AP1 & CEBPa) (PU1 & CEBPa & !EBF)
CEBPb=>2 CEBPb=>1	PU1 & CEBPa & CEBPb (CEBPa CEBPb) & PU1 & !(CEBPa & CEBPb & PU1)
E2A=> 1	(!CEBPa EBF IL7R) & !CEBPb
EBF=> 1	(PU1 & E2a & IL7R & !CEBPa & !CEBPb) (PU1 & EBF & Pax5 & !CEBPa & !CEBPb) (PU1 & E2a & IL7R & Pax5 & CEBPb & !CEBPa)
Pax5=> 1	E2a & EBF & !CEBPa & !CEBPb
IL7R=> 1	PU1 & E2a & IL7
IL3R=> 1	IL3
AP1=> 1	IL3R CEBPa
IL7 => 0	Input
IL3 => 0	Input

STG (=GSCC) for initial state 1011000011

ProB reprogramming model: HTG for IS= 1011000011

Content of HTG components (schemata)

Component	PU1	CEBPa	CEBPb	E2a	EBF	Pax5	IL7R	IL3R	AP1	IL7	IL3
#36	1	0	1	1	1	1	0	0	0	0	1
	1	0	1	1	1	1	0	0	1	0	0
	1	0	1	1	1	1	0	1	•	0	•
	1	0	1	1	1	1	1	0	0	•	•
	1	0	1	1	1	1	1	0	1	•	0
	1	0	1	1	1	1	1	1			•
#83	1	1	1	0	0	0	0	0	1	· ·	0
	1	1	1	0	0	0	0	1	1		•
	1	1	1	1	0	0	•	0	1	•	0
	1	1	1	1	0	0	•	1	1		•
	1	1	2	•	0	0	•	0	1	•	0
	1	1	2		0	0	•	1	1		•
	2	1	1	0	0	0	0	0	1	•	0
	2	1	1	0	0	0	0	1	1		•
	2	1	1	1	0	0	•	0	1	•	0
	2	1	1	1	0	0	•	1	1	•	•
	2	1	2	0	0	0	0	0	1	1	0
	2	1	2	0	0	0	0	1	1	•	•
	2	1	2	0	0	0	1	0	1	•	0
	2	1	2	0	0	0	1	1	1	•	•
	2	1	2	1	0	0	•	0	1	•	0
	2	1	2	1	0	0	•	1	1	•	•
#6	1	0	1	1	0	0	0	0	0	1	0
	1	0	1	1	0	0	1	0	0	•	0
	1	0	1	1	1	0	0	0	0	0	0
	1	0	1	1	1	0	1	0	0	•	0
#20	1	0	1	1	1	1	0	0	0	0	1
	1	0	1	1	1	1	0	0	1	0	0
	1	0	1	1	1	1	0	1	•	0	•
	1	0	1	1	1	1	1	0	0	•	•
	1	0	1	1	1	1	1	0	1	•	0
	1	0	1	1	1	1	1	1	•	•	•
#6	1	0	1	1	0	0	0	0	0	0	1
	1	0	1	1	0	0	0	0	1	0	0
	1	0	1	1	0	0	0	1	•	0	•

Outlook

- ★ Computation of GSCC ad HTG *on the fly*
- ★ Implementation into *GINsim*
- ★ Gain in simulation storing space
- ★ Gain in computing time thanks to data structure compaction (decision diagrams)
- ★ Emphasis on crucial transitions
- ★ HTG as a tools to study attractor basins

Contributors & supports

★ ENS (Paris)

Samuel Collombet Luca Grieco Anna Niarakis

★ TAGC (Marseille)

Duncan Berenguier

Cyrille Lepoivre Aby Mbodj Aurélien Naldi (=> UNIL) Denis Puthier Jacques van Helden

★ IML (Marseille)

Elisabeth Rémy Laurent Tichit

★ IGC (Oieras)

Claudine Chaouiya

★ ICRG (Barcelona) Thomas Graf

Chris van Oeven

★ EMBL (Heidelberg)

Eileen Furlong Charles Girardot Guillaume Junion

